已知函數(shù)f(x)=eax-12ax2-x-1.
(1)當(dāng)a≥1時,證明:對任意的x≥0,都有f(x)≥0;
(2)證明:n∑k=11k>2ln(n+1)-nln2(k∈N*,n∈N*).
f
(
x
)
=
e
ax
-
1
2
a
x
2
-
x
-
1
n
∑
k
=
1
1
k
>
2
ln
(
n
+
1
)
-
nln
2
(
k
∈
N
*
,
n
∈
N
*
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:114引用:2難度:0.3
相似題
-
1.已知函數(shù)
,當(dāng)x∈(0,+∞)時,f(x)≥0恒成立,則實數(shù)a的取值范圍是( )f(x)=e2x-2lnx+ax+1x2A.(-∞,1] B.(-∞,e2-1] C.(-∞,e] D.(-∞,2] 發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
2.函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實數(shù)a的取值范圍是( ?。?/h2>ax?f(ax)lnx≥f(lnx)?lnxaxA. (0,1e]B. [1e,+∞)C.(0,e] D. (1e,+∞)發(fā)布:2024/12/20 7:0:1組卷:222引用:6難度:0.6 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( ?。?/h2>2aex0A.[ ,e2]12eB.[ ,e2]1e2C.[ ,e4]1e2D.[ ,e4]1e發(fā)布:2024/12/20 6:0:1組卷:261引用:9難度:0.4
把好題分享給你的好友吧~~