2022-2023學(xué)年黑龍江省哈爾濱九中高二(下)月考數(shù)學(xué)試卷(3月份)
發(fā)布:2024/7/11 8:0:9
一、單選題:本題共有8個(gè)小題,每小題5分,共40分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.已知
,則P(AB)=( )P(B|A)=35,P(A)=45組卷:145引用:4難度:0.9 -
2.某課外興趣小組通過隨機(jī)調(diào)查,利用2×2列聯(lián)表和K2統(tǒng)計(jì)量研究數(shù)學(xué)成績優(yōu)秀是否與性別有關(guān).計(jì)算得K2=6.748,經(jīng)查閱臨界值表知P(K2>6.635)=0.010,則下列判斷正確的是( ?。?/h2>
組卷:128引用:5難度:0.7 -
3.
的展開式中x3的系數(shù)為( ?。?/h2>(2x-1x)6組卷:410引用:3難度:0.8 -
4.導(dǎo)師制是高中新的教學(xué)探索制度,班級科任教師作為導(dǎo)師既面向全體授課對象,又對指定的若干學(xué)生的個(gè)性、人格發(fā)展和全面素質(zhì)提高負(fù)責(zé),已知有3位科任教師負(fù)責(zé)某學(xué)習(xí)小組的6名同學(xué),每2名同學(xué)由1位科任教師負(fù)責(zé),則不同的分配方法的種數(shù)為( )
組卷:92引用:3難度:0.8 -
5.已知x,y的取值如表所示,若y與x線性相關(guān),且
=0.95x+a,則a=( ?。?br />?yx 0 1 3 4 y 2.2 4.3 4.8 6.7 組卷:113引用:22難度:0.9 -
6.設(shè)隨機(jī)變量X的分布列為P(X=i)=
,則ia(i=1,2,3,4)=( ?。?/h2>P(12<X<72)組卷:85引用:3難度:0.8 -
7.如圖是一塊高爾頓板示意圖:在一塊木塊上釘著若干排互相平行但相互錯(cuò)開的圓柱形小木釘,小木釘之間留有適當(dāng)?shù)目障蹲鳛橥ǖ?,前面擋有一塊玻璃,將小球從頂端放入,小球在下落過程中,每次碰到小木釘后都等可能地向左或向右落下,最后落入底部的格子中,格子從左到右分別編號為0,1,2,3,4,5用X表示小球落入格子的號碼,則下面計(jì)算錯(cuò)誤的是( )
組卷:135引用:4難度:0.5
四、解答題:本題共有6個(gè)小題,共70分.
-
21.王先生準(zhǔn)備利用家中閑置的10萬元進(jìn)行投資,投資公司向其推薦了A,B兩種理財(cái)產(chǎn)品,其中產(chǎn)品A一年后固定獲利8%,產(chǎn)品B的一年后盈虧情況的分布列如表(表中p>0):
盈虧情況 獲利16% 不賠不賺 虧損4% 概率 2p 14p
(2)該投資公司為提高客戶積極性,對投資產(chǎn)品B的客戶贈(zèng)送鼓勵(lì)金,每年的鼓勵(lì)金為產(chǎn)品B的投資額的2%但不超過1200元.王先生應(yīng)該如何分配兩個(gè)產(chǎn)品的投資額,才能使一年后投資收益(含鼓勵(lì)金)的期望值最大,最大為多少?組卷:34引用:3難度:0.5 -
22.某果園種植“糖心蘋果”已有十余年,為了提高利潤,該果園每年投入一定的資金,對種植、采摘、包裝、宣傳等環(huán)節(jié)進(jìn)行改進(jìn).如圖是2013年至2022年,該果園每年的投資金額x(單位:萬元)與年利潤增量y(單位:萬元)的散點(diǎn)圖:
該果園為了預(yù)測2023年投資金額為20萬元時(shí)的年利潤增量,建立了y關(guān)于x的兩個(gè)回歸模型;
模型①:由最小二乘公式可求得y與x的線性回歸方程:;?y=2.50x-2.50
模型②:由圖中樣本點(diǎn)的分布,可以認(rèn)為樣本點(diǎn)集中在曲線:y=blnx+a的附近,對投資金額x做交換,令t=lnx,則y=b?t+a,且有,10∑i=1ti=22.00,10∑i=1yi=230,10∑i=1tiyi=569.00.10∑i=1ti2=50.92
(1)根據(jù)所給的統(tǒng)計(jì)量,求模型②中y關(guān)于x的回歸方程;
(2)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù)R2,并選擇擬合精度更高、更可靠的模型,預(yù)測投資金額為20萬元時(shí)的年利潤增量(結(jié)果保留兩位小數(shù)).回歸模型 模型① 模型② 回歸方程 ?y=2.50x-2.50?y=blnx+a10∑i=1(yi-?yi)2102.28 36.19 ,?b=n∑i=1(ti-t)(yi-y)n∑i=1(ti-t)2;?a=y-?bt
相關(guān)指數(shù).R2=1-n∑i=1(yi-?y)2n∑i=1(yi-y)2
參考數(shù)據(jù):ln2≈0.6931,ln5≈1.6094.組卷:27引用:3難度:0.6