數(shù)學(xué)家發(fā)現(xiàn):sinx=x-x33!+x55!-x77!+…,其中n!=1×2×3×…×n.利用該公式可以得到:當(dāng)x∈(0,π2)時(shí),sinx<x,sinx>x-x33!+x55!;…,
(1)證明:當(dāng)x∈(0,π2)時(shí),sinxx>12;
(2)設(shè)f(x)=msinx,當(dāng)f(x)的定義域?yàn)閇a,b]時(shí),值域也為[a,b],則稱(chēng)[a,b]為f(x)的“和諧區(qū)間”.當(dāng)m=-2時(shí),f(x)是否存在“和諧區(qū)間”?若存在,求出f(x)的所有“和諧區(qū)間”,若不存在,請(qǐng)說(shuō)明理由.
sinx
=
x
-
x
3
3
!
+
x
5
5
!
-
x
7
7
!
+
…
x
∈
(
0
,
π
2
)
x
3
3
!
+
x
5
5
!
x
∈
(
0
,
π
2
)
sinx
x
>
1
2
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/31 8:0:9組卷:191引用:3難度:0.3
相似題
-
1.設(shè)
,則( ?。?/h2>a=12,b=ln32,c=π2sin12發(fā)布:2024/12/20 7:0:1組卷:130引用:3難度:0.6 -
2.已知函數(shù)
,對(duì)?x1,f(x)=exx-12ax,當(dāng)x1>x2時(shí),恒有x2∈[12,2],則實(shí)數(shù)a的取值范圍為( )f(x1)x2>f(x2)x1發(fā)布:2024/12/20 1:30:2組卷:97引用:1難度:0.4 -
3.已知
,則( )a=log40.4,b=log0.40.2,c=0.40.2發(fā)布:2024/12/20 13:30:1組卷:38引用:2難度:0.7
把好題分享給你的好友吧~~