當(dāng)前位置:
知識(shí)點(diǎn)挑題
請(qǐng)展開(kāi)查看知識(shí)點(diǎn)列表
>
<
更多>>
原創(chuàng)
![]() |
明確考點(diǎn)
剖析考向
真題演練及精選模擬
全方位助力備考
瀏覽次數(shù):13519
更新:2025年07月16日
|
原創(chuàng)
![]() |
知識(shí)圖解
新知探究
答疑解惑
針對(duì)訓(xùn)練
瀏覽次數(shù):3616
更新:2025年07月16日
|
2431.數(shù)列{an}滿足a1=2,an+1=
,則a2019=( ?。?/h2>1+an1-an發(fā)布:2024/12/23 8:0:25組卷:249引用:4難度:0.82432.在等差數(shù)列{an}中,若a2=5,a5=11,則a4=( ?。?/h2>
發(fā)布:2024/12/23 8:0:25組卷:198引用:2難度:0.82433.命題“?x>1,都有x2-2>0”的否定是( ?。?/h2>
發(fā)布:2024/12/22 15:30:10組卷:51引用:3難度:0.92434.不等式
的解集為( ?。?/h2>x-1x≤0發(fā)布:2024/12/22 15:30:10組卷:174引用:1難度:0.92435.已知M是橢圓C:
=1上的一點(diǎn),則點(diǎn)M到兩焦點(diǎn)的距離之和是( ?。?/h2>x29+y25發(fā)布:2024/12/22 15:30:10組卷:602引用:8難度:0.82436.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,是解析數(shù)論的創(chuàng)始人之一,以其名命名的函數(shù) f(x)=
稱為狄利克雷函數(shù),則關(guān)于f(x),下列說(shuō)法正確的是( ?。?/h2>1,x∈Q0,x∈?RQ發(fā)布:2024/12/22 8:0:1組卷:92引用:9難度:0.72437.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),其中R為實(shí)數(shù)集,Q為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)任意的x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中的真命題是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:98引用:2難度:0.52438.德國(guó)著名數(shù)學(xué)家狄利克雷(Dirichlet,1805~1859)在數(shù)學(xué)領(lǐng)域成就顯著,19世紀(jì),狄利克雷定義了一個(gè)“奇怪的函數(shù)”y=f(x)=
,其中R為實(shí)數(shù)集,Q為有理數(shù)集.則關(guān)于函數(shù)f(x),有如下四個(gè)命題,其中真命題的是( ?。?/h2>1,x∈Q0,x∈?RQ發(fā)布:2024/12/22 8:0:1組卷:43引用:1難度:0.52439.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號(hào)為.(寫(xiě)出所有正確命題的序號(hào))發(fā)布:2024/12/22 8:0:1組卷:23引用:2難度:0.5
