閱讀理解下列材料:
“數(shù)形結(jié)合“是一種非常重要的數(shù)學(xué)思想.在學(xué)習(xí)“整式的乘法”時(shí),我們通過構(gòu)造幾何圖形,用“等積法”直觀地推導(dǎo)出了完全平方和公式:(a+b)2=a2+2ab+b2(如圖1).所謂“等積法”就是用不同的方法表示同一個(gè)圖形的面積,從而得到一個(gè)等式.如圖1,從整體看是一個(gè)邊長(zhǎng)為a+b的正方形,其面積為(a+b)2.從局部看由四部分組成,即:一個(gè)邊長(zhǎng)為a的正方形,一個(gè)邊長(zhǎng)為b的正方形,兩個(gè)長(zhǎng)、寬分別為a,b的長(zhǎng)方形.這四部分的面積和為a2+2ab+b2.因?yàn)樗鼈儽硎镜氖峭粋€(gè)圖形的面積,所:以這兩個(gè)代數(shù)式應(yīng)該相等,即(a+b)2=a2+2ab+b.
同理,圖2可以得到一個(gè)等式:(a+b)(2a+b)=2a2+3ab+b2.
根據(jù)以上材料提供的方法,完成下列問題:
(1)由圖3可得等式:(a+2b)2=a2+4ab+4b2(a+2b)2=a2+4ab+4b2;
(2)由圖4可得等式:(2a+b)(a+2b)=2a2+5ab+2b2(2a+b)(a+2b)=2a2+5ab+2b2;
(3)若a>0,b>0,c>0,且a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值.
①為了解決這個(gè)問題,請(qǐng)你利用數(shù)形結(jié)合思想,仿照前面的方法在下方空白處畫出相應(yīng)的幾何圖形,通過這個(gè)幾何圖形得到一個(gè)含有a,b,c的等式.
②根據(jù)你畫的圖形可得等式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.
③利用①的結(jié)論,求a2+b2+c2的值.
【答案】(a+2b)2=a2+4ab+4b2;(2a+b)(a+2b)=2a2+5ab+2b2;(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:174引用:3難度:0.6
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2500引用:25難度:0.6 -
2.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6
把好題分享給你的好友吧~~