如圖,拋物線y=a(x+1)(x-3)交x軸于A、B兩點(點A在點B的左側(cè)),交y軸負半軸于C點,已知S△ABC=6.
(1)求拋物線的解析式;
(2)在直線BC下方的拋物線上取一點P,連接AP交BC于E點,當(dāng)tan∠AEC=4時,求點P的坐標(biāo);
(3)點M、N均在拋物線上,設(shè)點M的橫坐標(biāo)為m,點N的橫坐標(biāo)為n,(0<n<m<3),連接MN,連接AM、AN分別與y軸交于點S、T,∠AMN=2∠BAM,請問3OS+ST是否為定值?若是,求出其值;若不是,說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-3
(2);
(3)3OS+ST=4.
(2)
(
12
5
,-
51
25
)
(3)3OS+ST=4.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/4 17:30:2組卷:236引用:1難度:0.1
相似題
-
1.拋物線y=ax2+bx+c與x軸交于A(-1,0),B兩點(點A在點B的左側(cè)),交y軸正半軸于點C,且OB=OC.
(1)如圖1,已知C(0,3),①請直接寫出a,b,c的值;②連接AC、BC,P為BC上方拋物線上的一點,連接AP交BC于點M,若AC=AM,求點P的坐標(biāo);
(2)如圖2,已知OB=1,D為第三象限拋物線上一動點,直線DO交拋物線于另一點E,EF∥y軸交直線DC于點F,連接BF,求出CF+BF的最小值及此時點D的坐標(biāo).發(fā)布:2025/6/6 7:30:2組卷:532引用:3難度:0.4 -
2.如圖拋物線 y=-x2+bx+c 交x軸于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)求二次函數(shù)的解析式及頂點P的坐標(biāo);
(2)過定點(1,3)的直線l:y=kx+b與二次函數(shù)的圖象相交于M,N兩點.
①若 S△PMN=2,求k的值;
②證明:無論k為何值,△PMN恒為直角三角形.發(fā)布:2025/6/6 5:30:2組卷:187引用:1難度:0.2 -
3.如圖,拋物線C1:y1=ax2+2ax(a>0)與x軸交于點A,頂點為點P.
(1)直接寫出拋物線C1的對稱軸是 ,用含a的代數(shù)式表示頂點P的坐標(biāo) ;
(2)把拋物線C1繞點M(m,0)旋轉(zhuǎn)180°得到拋物線C2(其中m≥0),拋物線C2與x軸右側(cè)的交點為點B,頂點為點Q.
①如圖1,當(dāng)m=0時,求AB的值;
②若m=2,是否存在△ABP為等腰三角形,若存在請求出a的值,若不存在,請說明理由;
③當(dāng)四邊形APBQ為矩形時,請求出m與a之間的數(shù)量關(guān)系,并直接寫出當(dāng)a=3時矩形APBQ的面積.發(fā)布:2025/6/6 8:30:1組卷:19引用:2難度:0.2