如圖,拋物線C1:y1=ax2+2ax(a>0)與x軸交于點(diǎn)A,頂點(diǎn)為點(diǎn)P.
(1)直接寫出拋物線C1的對稱軸是 x=-1x=-1,用含a的代數(shù)式表示頂點(diǎn)P的坐標(biāo) (-1,-a)(-1,-a);
(2)把拋物線C1繞點(diǎn)M(m,0)旋轉(zhuǎn)180°得到拋物線C2(其中m≥0),拋物線C2與x軸右側(cè)的交點(diǎn)為點(diǎn)B,頂點(diǎn)為點(diǎn)Q.
①如圖1,當(dāng)m=0時(shí),求AB的值;
②若m=2,是否存在△ABP為等腰三角形,若存在請求出a的值,若不存在,請說明理由;
③當(dāng)四邊形APBQ為矩形時(shí),請求出m與a之間的數(shù)量關(guān)系,并直接寫出當(dāng)a=3時(shí)矩形APBQ的面積.

【考點(diǎn)】二次函數(shù)綜合題.
【答案】x=-1;(-1,-a)
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/6 8:30:1組卷:19引用:2難度:0.2
相似題
-
1.如圖,已知二次函數(shù)y=ax2+bx-4的圖象與x軸交于A,B兩點(diǎn),(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-2,0),且對稱軸為直線x=1,直線AD交拋物線于點(diǎn)D(2,m).
(1)求二次函數(shù)的表達(dá)式;
(2)在拋物線的對稱軸上是否存在一點(diǎn)M,使△MAC的周長最小,若存在,求出點(diǎn)M的坐標(biāo);
(3)如圖2,點(diǎn)P是線段AB上的一動點(diǎn)(不與A、B重合),過點(diǎn)P作PE∥AD交BD于E,連接DP,當(dāng)△DPE的面積最大時(shí),求點(diǎn)P的坐標(biāo).發(fā)布:2025/6/6 20:30:1組卷:90引用:1難度:0.2 -
2.如圖,已知拋物線y=x2+bx+c與直線y=-x+3相交于坐標(biāo)軸上的A,B兩點(diǎn),頂點(diǎn)為C.
(1)填空:b=
(2)將直線AB向下平移h個(gè)單位長度,得直線EF.當(dāng)h為何值時(shí),直線EF與拋物線y=x2+bx+c沒有交點(diǎn)?
(3)直線x=m與△ABC的邊AB,AC分別交于點(diǎn)M,N.當(dāng)直線x=m把△ABC的面積分為1:2兩部分時(shí),求m的值.發(fā)布:2025/6/6 21:0:2組卷:327引用:5難度:0.3 -
3.如圖,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(-1,0),B(4,0),交y軸于點(diǎn)C.
(1)求拋物線的表達(dá)式.
(2)點(diǎn)D為y軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D,使S△ABC=S△ABD?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.23
(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求點(diǎn)E的坐標(biāo).發(fā)布:2025/6/6 23:30:1組卷:40引用:1難度:0.3