在平面直角坐標系xOy中,已知拋物線y=-x2+2mx+3m,點A(3,0).
(1)當(dāng)拋物線過點A時,求拋物線的解析式;
(2)證明:無論m為何值,拋物線必過定點D,并求出點D的坐標;
(3)在(1)的條件下,拋物線與y軸交于點B,點P是拋物線上位于第一象限的點,連接AB,PD交于點M,PD與y軸交于點N.設(shè)S=S△PAM-S△BMN,問是否存在這樣的點P,使得S有最大值?若存在,請求出點P的坐標,并求出S的最大值;若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3;
(2)D(-,-);
(3)P(1,4).
(2)D(-
3
2
9
4
(3)P(1,4).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2559引用:4難度:0.1
相似題
-
1.如圖,拋物線y=ax2+bx+c交x軸于A(-1,0),B(3,0)兩點,交y軸于點C(0,-3),點Q為線段BC上的動點.
(1)求拋物線的解析式;
(2)求|QO|+|QA|的最小值;
(3)過點Q作PQ∥AC交拋物線的第四象限部分于點P,連接PA,PB,記△PAQ與△PBQ面積分別為S1,S2,設(shè)S=S1+S2,求點P坐標,使得S最大,并求此最大值.發(fā)布:2025/5/26 2:0:6組卷:2298引用:5難度:0.3 -
2.如圖,已知拋物線
與x軸交于A、B兩點,與y軸交于點C,并且經(jīng)過P(-1,n),Q(5,n)兩點.y=12x2+bx-6
(1)求拋物線的解析式;
(2)點D為直線AC下方拋物線上的一動點,直線BD交線段AC于點E,請求出的最大值;DEBE
(3)探究:在拋物線上是否存在點M,使得∠MAB=2∠OCB?若存在,求出點M的坐標;若不存在,說明理由.發(fā)布:2025/5/26 2:0:6組卷:336引用:2難度:0.1 -
3.如圖,拋物線
與x軸交于點A和點C(-1,0),與y軸交于點B(0,3),連接AB,BC,對稱軸PD交AB與點E.y=-34x2+bx+c
(1)求拋物線的解析式;
(2)如圖2,試探究:線段BC上是否存在點M,使∠EMO=∠ABC,若存在,求出點M的坐標;若不存在,請說明理由;
(3)如圖3,點Q是拋物線的對稱軸PD上一點,若以點Q、A、B為頂點的三角形是銳角三角形,請直接寫出點Q縱坐標n的取值范圍.發(fā)布:2025/5/26 2:0:6組卷:121引用:2難度:0.3
相關(guān)試卷