“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若ab=24,大正方形的面積為129.則小正方形的邊長為( ?。?/h1>
【考點(diǎn)】勾股定理的證明.
【答案】D
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/5 3:0:9組卷:199引用:2難度:0.6
相似題
-
1.大家在學(xué)完勾股定理的證明后發(fā)現(xiàn)運(yùn)用“同一圖形的面積不同表示方式相同”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.學(xué)有所用:在等腰三角形ABC中,AB=AC,其一腰上的高為h,M是底邊BC上的任意一點(diǎn),M到腰AB、AC的距離分別為h1、h2.
(1)請你結(jié)合圖形來證明:h1+h2=h;
(2)當(dāng)點(diǎn)M在BC延長線上時,h1、h2、h之間又有什么樣的結(jié)論.請你畫出圖形,并直接寫出結(jié)論不必證明;
(3)利用以上結(jié)論解答,如圖在平面直角坐標(biāo)系中有兩條直線l1:y=x+3,l2:y=-3x+3,若l2上的一點(diǎn)M到l1的距離是34.求點(diǎn)M的坐標(biāo).32發(fā)布:2025/6/6 19:30:1組卷:10477引用:26難度:0.1 -
2.如圖,四個全等的直角三角形按如圖所示的方式圍成正方形ABCD,過各較長直角邊的中點(diǎn)作垂線,圍成面積為S的小正方形EFGH.已知AM為Rt△ABM較長直角邊,AM=2
EF,則正方形ABCD的面積為 S.3發(fā)布:2025/6/7 0:30:1組卷:192引用:2難度:0.6 -
3.我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖1所示).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF=4,則S1+S2+S3的值是( )
發(fā)布:2025/6/7 4:0:1組卷:837引用:8難度:0.5