若存在任意一個三位數(shù)M,滿足各數(shù)位上的數(shù)字均不為0,百位上的數(shù)字與十位上的數(shù)字的2倍之和等于十位上的數(shù)字與個位上的數(shù)字的2倍之和,則稱這個三位數(shù)M為“雙增數(shù)”.對于一個“雙增數(shù)”M=abc,規(guī)定:s=a+c,t=b+c,F(M)=3s+2t.
例如,M=243,因為2+2×4=4+2×3,故M是一個“雙增數(shù)”,s=2+3=5,t=4+3=7,則F(M)=3×5+2×7=29.
(1)請判斷365,597是不是“雙增數(shù)”,說明理由.若是,請求出F(M)的值;
(2)若三位數(shù)N為“雙增數(shù)”,N的百位數(shù)字為x-1,個位數(shù)字為y(其中x,y是正整數(shù),且3≤y≤7),當(dāng)N各數(shù)位上的數(shù)字之和與F(N)的和能被17整除時,求所有滿足條件的“雙增數(shù)”N的值.
abc
【考點】因式分解的應(yīng)用.
【答案】(1)365不是“雙增數(shù)”,597是“雙增數(shù)”.
(2)354,825
(2)354,825
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/13 8:0:9組卷:550引用:3難度:0.5
相似題
-
1.已知m2=4n+a,n2=4m+a,m≠n,則m2+2mn+n2的值為( ?。?/h2>
發(fā)布:2025/6/21 1:30:2組卷:2418引用:6難度:0.5 -
2.先閱讀下列材料,再解答下列問題:
材料:因式分解:(x+y)2+2(x+y)+1.
解:將“x+y”看成整體,令x+y=A,則
原式=A2+2A+1=(A+1)2.
再將“A”還原,得原式=(x+y+1)2.
上述解題用到的是“整體思想”,“整體思想”是數(shù)學(xué)解題中常用的一種思想方法,請你解答下列問題:
(1)因式分解:1+2(x-y)+(x-y)2=;
(2)因式分解:(x2-6x)(x2-6x+18)+81;
(3)求證,若n為正整數(shù),則式子(n+1)(n+2)(n2+3n)+1的值一定是某一個整數(shù)的平方.發(fā)布:2025/6/21 0:0:1組卷:1363引用:5難度:0.4 -
3.對于算式20183-2018,下列說法錯誤的是( ?。?/h2>
發(fā)布:2025/6/21 3:0:1組卷:2369引用:5難度:0.5