試卷征集
加入會(huì)員
操作視頻

在四邊形ABCD中,AD∥BC,AB=CD,對(duì)角線BD⊥CD,過(guò)點(diǎn)C作CE⊥BC交BD的延長(zhǎng)線于點(diǎn)E,連接AE.
(1)證明:△CED∽△BEC;
(2)若EC=EA,證明:
ED
AD
=
EC
CD
;
(3)在(2)的條件下,試求tan∠EAD的值.

【考點(diǎn)】相似形綜合題
【答案】(1)(2)證明見解答過(guò)程;
(3)
2
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:205引用:3難度:0.3
相似題
  • 1.綜合與實(shí)踐
    【問(wèn)題情境】
    數(shù)學(xué)活動(dòng)課上,楊老師出示了教材上的一個(gè)問(wèn)題:
    如圖1,四邊形ABCD是正方形,G是BC上的任意一點(diǎn),DE⊥AG于點(diǎn)E,BF∥DE,交AG于點(diǎn)F,求證:AF-BF=EF.
    數(shù)學(xué)興趣小組的小明同學(xué)做出了回答,解題思路如下:
    由正方形的性質(zhì)得到AB=AD,∠BAD=90°,
    再由垂直和平行可知∠AED=∠AFB=90°,
    再利用同角的余角相等得到∠ADE=∠BAF,
    則可根據(jù)“AAS”判定△ADE≌△BAF,
    得到AE=BF,所以AF-BF=AF-AE=EF.
    【建立模型】
    該數(shù)學(xué)小組小芳同學(xué)受此問(wèn)題啟發(fā),對(duì)上面的問(wèn)題進(jìn)行了改編,并提出了如下問(wèn)題:
    (1)如圖2,四邊形ABCD是正方形,E,F(xiàn)是對(duì)角線AC上的點(diǎn),BF∥DE,連接BE,DF.
    求證:四邊形BEDF是菱形;
    【模型拓展】
    該興趣小組的同學(xué)們?cè)跅罾蠋煹闹笇?dǎo)下大膽嘗試,改變圖形模型,發(fā)現(xiàn)并提出新的探究點(diǎn);
    (2)如圖3,若正方形ABCD的邊長(zhǎng)為12,E是對(duì)角線AC上的一點(diǎn),過(guò)點(diǎn)E作EG⊥DE,交邊BC于點(diǎn)G,連接DG,交對(duì)角線AC于點(diǎn)F,CF:EF=3:5,求FG?DF的值.

    發(fā)布:2025/5/23 12:30:2組卷:676引用:1難度:0.4
  • 2.已知點(diǎn)E、F分別是四邊形ABCD邊AB、AD上的點(diǎn),且DE與CF相交于點(diǎn)G.
    (1)如圖①,若AB∥CD,AB=CD,∠A=90°,且AD?DF=AE?DC,求證:∠CGE=90°;
    (2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時(shí),求證:DE?CD=CF?DA;
    (3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時(shí),直接寫出
    DE
    CF
    的值.

    發(fā)布:2025/5/23 13:30:1組卷:556引用:2難度:0.3
  • 3.如圖,△ABC中,∠B=90°,AB=BC,D為邊BC上一動(dòng)點(diǎn)(不與B、C重合),CD和AD的垂直平分線交于點(diǎn)E,連接AD、AE、DE和CE,ED與AC相交于點(diǎn)F,設(shè)∠CAE=a.
    (1)請(qǐng)用含a的代數(shù)式表示∠CED的度數(shù);
    (2)求證:△ABC∽△AED;
    (3)若a=30°,求EF:BD的值.

    發(fā)布:2025/5/23 14:0:1組卷:77引用:1難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正