已知點(diǎn)E、F分別是四邊形ABCD邊AB、AD上的點(diǎn),且DE與CF相交于點(diǎn)G.
(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且AD?DF=AE?DC,求證:∠CGE=90°;
(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時,求證:DE?CD=CF?DA;
(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時,直接寫出DECF的值.

DE
CF
【考點(diǎn)】相似形綜合題.
【答案】(1)見解析;
(2)見解析;
(3).
(2)見解析;
(3)
25
24
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:556引用:2難度:0.3
相似題
-
1.如圖1,在Rt△ABC中,∠BAC=90°,D為邊AB上一點(diǎn),∠ACD=∠B.
(1)求證:AC2=AD?AB;
(2)如圖2,過點(diǎn)A作AM⊥CD于M,交BC于點(diǎn)E,若AB=4AD,求的值;AMME
(3)如圖,N為CD延長線上一點(diǎn),連接BN,且∠NBD=2∠ACD,若,直接寫出tan∠ACD=1n(n>1)的值(用含n的代數(shù)式表示).NDDC發(fā)布:2025/5/22 10:30:1組卷:557引用:4難度:0.1 -
2.問題背景:某學(xué)習(xí)小組正在研究如下問題:如圖1所示,四邊形ABCD與四邊形CEFG均為正方形,且點(diǎn)E、G分別在邊BC、CD上,連接DE、BG,點(diǎn)M是BG中點(diǎn),連接CM,試猜測CM與DE的數(shù)量關(guān)系與位置關(guān)系,并加以證明.
解決問題:小華從旋轉(zhuǎn)的角度提出一個問題:如圖2,將正方形CEFG繞點(diǎn)C順時針旋轉(zhuǎn)一定角度,其他條件不變,此時“問題背景”中的結(jié)論還成立嗎?如果成立,請加以證明;如果不成立,請說明理由.
拓展延伸:小剛提出了一個更加一般化的問題:如圖3所示,?ABCD∽?ECGF,且,其他條件不變,此時CM與DE又有怎樣的數(shù)量關(guān)系?請直接寫出結(jié)果.ABBC=ab?
發(fā)布:2025/5/22 10:30:1組卷:242引用:4難度:0.1 -
3.綜合與實(shí)踐
我們在沒有量角器或三角尺的情況下,用折疊特殊矩形紙片的方法進(jìn)行如下操作也可以得到幾個相似的含有30°角的直角三角形.
實(shí)踐操作:第一步:如圖①,矩形紙片ABCD的邊長AB=,將矩形紙片ABCD對折,使點(diǎn)D與點(diǎn)A重合,點(diǎn)C與點(diǎn)B重合,折痕為EF,然后展開,EF與CA交于點(diǎn)H.3
第二步:如圖②,將矩形紙片ABCD沿過點(diǎn)C的直線再次折疊,使CD落在對角線CA上,點(diǎn)D的對應(yīng)點(diǎn)D'恰好與點(diǎn)H重合,折痕為CG,將矩形紙片展平,連接GH.
問題解決:
(1)在圖②中,sin∠ACB=,=;EGCG
(2)在圖②中,CH2=CG?;從圖②中選擇一條線段填在空白處,并證明你的結(jié)論;
拓展延伸:
(3)將上面的矩形紙片ABCD沿過點(diǎn)C的直線折疊,點(diǎn)D的對應(yīng)點(diǎn)D'落在矩形的內(nèi)部或一邊上,設(shè)∠DCD'=a,若0°<a≤90°,連接D'A,D'A的長度為m,則m的取值范圍是 .發(fā)布:2025/5/22 9:30:1組卷:681引用:7難度:0.1