如圖,已知點(diǎn)T1(3,-5)和點(diǎn)T2(-5,21)在雙曲線C:x2a2-y2b2=1(a>0,b>0)上,雙曲線C的左頂點(diǎn)為A,過點(diǎn)L(a2,0)且不與x軸重合的直線l與雙曲線C交于P,Q兩點(diǎn),直線AP,AQ與圓O:x2+y2=a2分別交于M,N兩點(diǎn).
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線AP,AQ的斜率分別為k1,k2,求k1k2的值;
(3)證明:直線MN過定點(diǎn).
5
21
x
2
a
2
-
y
2
b
2
【答案】(1)-=1.
(2)k1k2為定值為-.
(3)證明見解答.
x
2
4
y
2
4
(2)k1k2為定值為-
1
3
(3)證明見解答.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 16:0:2組卷:543引用:13難度:0.3
相似題
-
1.已知雙曲線C:
=1(a>0,b>0)的左頂點(diǎn)為A,過左焦點(diǎn)F的直線與C交于P,Q兩點(diǎn).當(dāng)PQ⊥x軸時(shí),|PA|=x2a2-y2b2,△PAQ的面積為3.10
(1)求C的方程;
(2)證明:以PQ為直徑的圓經(jīng)過定點(diǎn).發(fā)布:2024/12/18 0:0:1組卷:714引用:8難度:0.5 -
2.已知雙曲線
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點(diǎn),若A為線段BF1的中點(diǎn),且BF1⊥BF2,則C的離心率為( ?。?/h2>C:x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/11/8 21:0:2組卷:448引用:8難度:0.5 -
3.如圖,在平面直角坐標(biāo)系xOy中,已知等軸雙曲線E:
(a>0,b>0)的左頂點(diǎn)A,過右焦點(diǎn)F且垂直于x軸的直線與E交于B,C兩點(diǎn),若△ABC的面積為x2a2-y2b2=1.2+1
(1)求雙曲線E的方程;
(2)若直線l:y=kx-1與雙曲線E的左,右兩支分別交于M,N兩點(diǎn),與雙曲線E的兩條漸近線分別交于P,Q兩點(diǎn),求的取值范圍.|MN||PQ|發(fā)布:2024/10/31 12:30:1組卷:547引用:11難度:0.5