如圖,在平面直角坐標(biāo)系xOy中,已知等軸雙曲線E:x2a2-y2b2=1(a>0,b>0)的左頂點(diǎn)A,過(guò)右焦點(diǎn)F且垂直于x軸的直線與E交于B,C兩點(diǎn),若△ABC的面積為2+1.
(1)求雙曲線E的方程;
(2)若直線l:y=kx-1與雙曲線E的左,右兩支分別交于M,N兩點(diǎn),與雙曲線E的兩條漸近線分別交于P,Q兩點(diǎn),求|MN||PQ|的取值范圍.
x
2
a
2
-
y
2
b
2
=
1
2
+
1
|
MN
|
|
PQ
|
【考點(diǎn)】直線與雙曲線的綜合;雙曲線的標(biāo)準(zhǔn)方程.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/31 12:30:1組卷:511引用:10難度:0.5
相似題
-
1.已知雙曲線C:
=1(a>0,b>0)的左頂點(diǎn)為A,過(guò)左焦點(diǎn)F的直線與C交于P,Q兩點(diǎn).當(dāng)PQ⊥x軸時(shí),|PA|=x2a2-y2b2,△PAQ的面積為3.10
(1)求C的方程;
(2)證明:以PQ為直徑的圓經(jīng)過(guò)定點(diǎn).發(fā)布:2024/12/18 0:0:1組卷:681引用:8難度:0.5 -
2.已知雙曲線C的中心為坐標(biāo)原點(diǎn),右焦點(diǎn)為
,離心率為(25,0).5
(1)求C的方程;
(2)記C的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P在定直線x=-1上運(yùn)動(dòng),直線PA1與PA2雙曲線分別交于M,N兩點(diǎn),證明:直線MN恒過(guò)定點(diǎn).發(fā)布:2024/10/25 5:0:2組卷:105引用:1難度:0.2 -
3.已知雙曲線
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1的直線與C的兩條漸近線分別交于A,B兩點(diǎn),若A為線段BF1的中點(diǎn),且BF1⊥BF2,則C的離心率為( ?。?/h2>C:x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/11/8 21:0:2組卷:433引用:8難度:0.5
把好題分享給你的好友吧~~