我們知道,任意一正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=pq,例如:12可以分解成1×12,2×6或3×4.因為12-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=34.
(1)求F(36)的值;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為整數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的數(shù)所得的差為54,那么我們稱這個數(shù)t為“吉祥數(shù)”.
①寫出所有的“吉祥數(shù)”t;
②求所有“吉祥數(shù)”中F(t)的最大值.
p
q
3
4
【考點】因式分解的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/17 20:0:2組卷:144引用:2難度:0.7
相關(guān)試卷