如圖,已知在四邊形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O交邊DC于E、F兩點,AD=1,BC=5,設⊙O的半徑長為r.
(1)聯(lián)結OF,當OF∥BC時,求⊙O的半徑長;
(2)過點O作OH⊥EF,垂足為點H,設OH=y,試用r的代數式表示y;
(3)設點G為DC的中點,聯(lián)結OG、OD,△ODG是否能成為等腰三角形?如果能,試求出r的值;如不能,試說明理由.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:804引用:2難度:0.4
相似題
-
1.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若OC=5,CD=8,則AE=.
發(fā)布:2025/1/28 8:0:2組卷:428引用:42難度:0.7 -
2.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若AB=10,CD=8,則AE的長度為( ?。?/h2>
發(fā)布:2025/1/28 8:0:2組卷:82引用:5難度:0.9 -
3.如圖,AB為圓O的直徑,CD為弦,AM⊥CD于M,BN⊥CD于N.
(1)求證:CM=DN.
(2)若AB=10,CD=8,求BN-AM的值.發(fā)布:2025/1/28 8:0:2組卷:357引用:2難度:0.7