央視科教頻道播放的《被數(shù)學(xué)選中的人》節(jié)目中說到,“數(shù)學(xué)區(qū)別于其它學(xué)科最主要的特征是抽象與推理”.幾何學(xué)習(xí)尤其需要我們從復(fù)雜的問題中進(jìn)行抽象,形成一些基本幾何模型,用類比等方法,進(jìn)行再探究、推理,以解決新的問題.
(1)【模型探究】如圖1,△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,連接BE,CD.這一圖形稱“手拉手模型”.
求證△ABE≌△ACD,請(qǐng)你完善下列過程.
證明:∵∠BAC=∠DAE,
∴∠BAC-∠1=∠DAE-∠1( 等式的性質(zhì)等式的性質(zhì))①.
即∠2=∠3.
在△ABE和△ACD中AB=AC (??)② (??)③
,
∴△ABE≌△ACD( SASSAS)④.
(2)【模型指引】如圖2,△ABC中,AB=AC,∠BAC=40°,以B為端點(diǎn)引一條與腰AC相交的射線,在射線上取點(diǎn)D,使∠ADB=∠ACB,求∠BDC的度數(shù).
小亮同學(xué)通過觀察,聯(lián)想到手拉手模型,在BD上找一點(diǎn)E,使AE=AD,最后使問題得到解決.請(qǐng)你幫他寫出解答過程.
(3)【拓展延伸】如圖3,△ABC中,AB=AC,∠BAC為任意角度,若射線BD不與腰AC相交,而是從端點(diǎn)B向右下方延伸.仍在射線上取點(diǎn)D,使∠ADB=∠ACB,試判斷∠BAC與∠BDC有何數(shù)量關(guān)系?并寫出簡要說明.
AB = AC |
( ?? ) ② |
( ?? ) ③ |
【考點(diǎn)】三角形綜合題.
【答案】等式的性質(zhì);SAS
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/21 3:0:11組卷:662引用:4難度:0.5
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:184引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng):動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:143引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1