如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+c(a≠0)過O、B、C三點(diǎn),B、C坐標(biāo)分別為(10,0)和(185,-245),以O(shè)B為直徑的⊙A經(jīng)過C點(diǎn),直線l垂直x軸于B點(diǎn).
(1)求直線BC的解析式;
(2)求拋物線解析式及頂點(diǎn)坐標(biāo);
(3)點(diǎn)M是⊙A上一動點(diǎn)(不同于O,B),過點(diǎn)M作⊙A的切線,交y軸于點(diǎn)E,交直線l于點(diǎn)F,設(shè)線段ME長為m,MF長為n,請猜想m?n的值,并證明你的結(jié)論;
(4)若點(diǎn)P從O出發(fā),以每秒一個單位的速度向點(diǎn)B做直線運(yùn)動,點(diǎn)Q同時從B出發(fā),以相同速度向點(diǎn)C做直線運(yùn)動,經(jīng)過t(0<t≤8)秒時恰好使△BPQ為等腰三角形,請求出滿足條件的t值.
18
5
24
5
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1541引用:51難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動點(diǎn),過P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問:
①m取何值時,過點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3642引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5A. 25<a<1320B. 25<a<1120C. 1120<a<35D. 35<a<1320發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7
相關(guān)試卷