規(guī)定:如果兩個函數(shù)圖象上至少存在一組點是關(guān)于原點對稱的,我們則稱這兩個函數(shù)互為“O—函數(shù)”.這組點稱為“XC點”.例如:點P(1,1)在函數(shù)y=x2上,點Q(-1,-1)在函數(shù)y=-x-2上,點P與點Q關(guān)于原點對稱,此時函數(shù)y=x2和y=-x-2互為“O—函數(shù)”,點P與點Q則為一組“XC點”.
(1)已知函數(shù)y=-2x-1和y=-6x互為“O—函數(shù)”,請求出它們的“XC點”;
(2)已知函數(shù)y=x2+2x+4和y=4x+n-2022互為“O—函數(shù)”,求n的最大值并寫出“XC點”;
(3)已知二次函數(shù)y=ax2+bx+c(a>0)與y=2bx+1互為“O—函數(shù)”有且僅存在一組“XC點”,如圖,若二次函數(shù)的頂點為M,與x軸交于A(x1,0),B(x2,0)其中0<x1<x2,AB=c2-2c+6c,過頂點M作x軸的平行線l,點P在直線l上,記P的橫坐標為-t,連接OP,AP,BP.若∠OPA=∠OBP,求t的最小值.
6
x
c
2
-
2
c
+
6
c
t
【考點】二次函數(shù)綜合題.
【答案】(1)(-2,3)與(2,-3)或(,-4)與(-,4);
(2)n有最大值2019,(1,7)與(-1,-7);
(3).
3
2
3
2
(2)n有最大值2019,(1,7)與(-1,-7);
(3)
1
4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/26 7:30:2組卷:1096引用:4難度:0.3
相似題
-
1.如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最???若存在,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.發(fā)布:2025/6/14 9:30:1組卷:1465引用:99難度:0.1 -
2.如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于A,B兩點,與y軸交于點C,頂點為D(2,1)
(1)求拋物線y=-x2+bx+c的表達式;
(2)在拋物線的對稱軸上是否存在一點P,使得△PAC周長最?。咳舸嬖?,求出點P的坐標;若不存在,請說明理由.
(3)把上述拋物線沿它的對稱軸向下平移,平移的距離為h(h>0),在平移過程中,該拋物線與直線BC始終有交點,求h的最大值.發(fā)布:2025/6/14 10:0:1組卷:137引用:1難度:0.3 -
3.如圖,已知二次函數(shù)
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.y=-12x2+bx+c
(1)求這個二次函數(shù)的解析式;
(2)求這個二次函數(shù)的對稱軸、頂點坐標;
(3)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連結(jié)BA、BC,求△ABC的面積.
(4)若點D為拋物線與x軸的另一個交點,在拋物線上是否存在一點M,使△ADM的面積為△ABC的面積的2倍,若存在,請求出M的坐標,若不存在,請說明理由.發(fā)布:2025/6/14 8:30:1組卷:263引用:3難度:0.1
相關(guān)試卷