讀一讀:式子“1+2+3+4+5+…+100”表示從1開始的100個連續(xù)自然數(shù)的和.由于上述式子比較長,書寫也不方便,為了簡便起見,我們可將“1+2+3+4+5+…+100”表示為100∑n=1n,這里“∑”是求和符號.例如:“1+3+5+7+9+…+99”(即從1開始的100以內(nèi)的連續(xù)奇數(shù)的和)可表示為50∑n=1(2n-1);又如“13+23+33+43+53+63+73+83+93+103”可表示為10∑n=1n3.同學(xué)們,通過對以上材料的閱讀,請解答下列問題:
①2+4+6+8+10+…+100(即從2開始的100以內(nèi)的連續(xù)偶數(shù)的和)用求和符號可表示為 50∑n=12n50∑n=12n;
②計算:5∑n=1(n2-1)=5050(填寫最后的計算結(jié)果).
100
∑
n
=
1
n
50
∑
n
=
1
(
2
n
-
1
)
10
∑
n
=
1
n
3
50
∑
n
=
1
2
n
50
∑
n
=
1
2
n
5
∑
n
=
1
(
n
2
-
1
)
【考點】整式的混合運算.
【答案】;50
50
∑
n
=
1
2
n
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:896引用:22難度:0.3
相似題
-
1.長方形面積是3a2-3ab+6a,一邊長為3a,則它的周長是
發(fā)布:2025/6/24 19:0:1組卷:146引用:4難度:0.7 -
2.(1)填空:①(-xy2)2=
=(-3x2y)(23xy2)
(2)計算:①(x+5y)(2x-y),②(-a)9÷(-a)6?a2+(2a4)2÷a3.發(fā)布:2025/6/25 7:30:2組卷:109引用:2難度:0.5 -
3.將邊長為m+3的正方形的兩鄰邊長分別增加1和減少1,得到的長方形①的面積為S1.
(1)探究該正方形的面積S與S1的差是否是一個常數(shù),如果是,求出這個常數(shù);如果不是,說明理由;
(2)再將這個正方形兩鄰邊長分別增加4和減少2,得到的長方形②的面積為S2.
①試比較S1,S2的大小;
②當(dāng)m為正整數(shù)時,若某個圖形的面積介于S1,S2之間(不包括S1,S2)且面積為整數(shù),這樣的整數(shù)值有且只有14個,求m的值.發(fā)布:2025/6/25 8:30:1組卷:22引用:1難度:0.6