已知雙曲線y2a2-x22=1的兩個焦點(diǎn)分別為F1、F2,離心率等于3,設(shè)雙曲線的兩條漸近線分別為直線l1、l2;若點(diǎn)A、B分別在l1、l2上,且滿足3|AB|=2|F1F2|,則線段AB的中點(diǎn)M的軌跡C的方程為( ?。?/h1>
y
2
a
2
-
x
2
2
=
1
3
3
|
AB
|
=
2
|
F
1
F
2
|
【答案】A
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/30 5:0:1組卷:111引用:2難度:0.7
相似題
-
1.雙曲線
的焦點(diǎn)到漸近線的距離為( ?。?/h2>x25-y2=1發(fā)布:2024/12/20 12:0:3組卷:63引用:1難度:0.7 -
2.雙曲線
的右焦點(diǎn)恰是拋物線y2=2px(p>0)的焦點(diǎn)F,雙曲線與拋物線在第一象限交于點(diǎn)A(2,m),若|AF|=5,則雙曲線的方程為( ?。?/h2>x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/12/20 20:30:1組卷:228引用:3難度:0.6 -
3.過雙曲線
的左頂點(diǎn),且與直線2x-y+1=0平行的直線方程為 .x24-y23=1發(fā)布:2024/12/20 0:0:1組卷:49引用:5難度:0.7
把好題分享給你的好友吧~~