已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且a1=2b1=2,a4=b4,a3+a5=b5.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記數(shù)列{an-1>ban}的前n項(xiàng)和為Sn,求證:9Sn-16=a6n-8b2n+1(n∈N*);
(3)求2n∑k=1[log2bkakak+1bk+1-(-1)ka2k](n∈N*).
b
a
n
2
n
∑
k
=
1
[
log
2
b
k
a
k
a
k
+
1
b
k
+
1
-
(
-
1
)
k
a
2
k
]
(
n
∈
N
*
)
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:550引用:1難度:0.4
相似題
-
1.已知數(shù)列{an}是公差不為0的等差數(shù)列,前n項(xiàng)和為Sn,S9=144,a3是a1與a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿(mǎn)足+log2bn=0,若cn=anbn,求數(shù)列{cn}前n項(xiàng)和為T(mén)n.an-13發(fā)布:2024/12/29 12:0:2組卷:129引用:2難度:0.5 -
2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:449引用:17難度:0.6
相關(guān)試卷