平面直角坐標(biāo)系xOy中,正方形ABCD的四個(gè)頂點(diǎn)坐標(biāo)分別為:A(-1,1),B(-1,-1),C(1,-1),D(1,1),P、Q是這個(gè)正方形外兩點(diǎn),且PQ=2.給出如下定義:記線段PQ的中點(diǎn)T,平移線段PQ得到線段P'Q'(其中P'、Q'分別是P、Q的對(duì)應(yīng)點(diǎn)),記線段P'Q'的中點(diǎn)T'.若點(diǎn)P'、Q'分別落在正方形ABCD的一組鄰邊上,或線段P'Q'與正方形ABCD的一邊重合,則稱線段TT'長度的最小值為線段PQ到正方形ABCD的“平移距離”,稱此時(shí)的點(diǎn)T'為線段PQ到正方形ABCD的“平移中點(diǎn)”.例如:如圖,線段PQ=2,平移線段PQ到正方形ABCD內(nèi),得到兩條線段P1Q1和P2Q2,這兩條線段互相平行,若T1,T2分別為P1Q1和P2Q2的中點(diǎn),則點(diǎn)T1為線段PQ到正方形ABCD的“平移中點(diǎn)”.

(1)點(diǎn)P(a,1),Q(a,-1).
①當(dāng)a=-2時(shí),則線段PQ到正方形ABCD的“平移距離”d為 11;
②當(dāng)線段PQ到正方形ABCD的“平移距離”d≤1時(shí),直接寫出a的取值范圍.
(2)線段PQ的中點(diǎn)T的坐標(biāo)為(t,t+4).
①當(dāng)線段PQ∥BD時(shí),求線段PQ到正方形ABCD的“平移距離”d的最小值;
②當(dāng)t=-2時(shí),請(qǐng)畫出所有線段PQ到正方形ABCD的“平移中點(diǎn)”所組成的圖形,并直接寫出線段PQ到正方形ABCD的“平移距離”d的取值范圍.
【考點(diǎn)】四邊形綜合題.
【答案】1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:61引用:1難度:0.2
相似題
-
1.如圖,在Rt△ABC中,∠B=90°,BC=5
,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.3
(1)求AB,AC的長;
(2)求證:AE=DF;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(4)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.發(fā)布:2025/6/7 18:30:1組卷:843引用:4難度:0.3 -
2.如圖,在△ABC中,點(diǎn)O是AC邊上一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交△BCA的外角∠ACG的平分線于點(diǎn)F.
(1)探究OE與OF的數(shù)量關(guān)系并加以以證明;
(2)連接BE,BF,當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí),四邊形BCFE可能為菱形嗎?若可能,請(qǐng)證明;若不可能,請(qǐng)說明理由;
(3)連接AE,AF,當(dāng)點(diǎn)O在AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?請(qǐng)說明理由;
(4)在(3)的條件下,△ABC滿足什么條件時(shí),四邊形AECF是正方形?請(qǐng)說明理由.發(fā)布:2025/6/7 17:0:1組卷:299引用:2難度:0.4 -
3.如圖,在Rt△ABC中,∠C=90°,AC=16厘米,BC=20厘米,點(diǎn)D在BC上,且CD=12厘米.現(xiàn)有兩個(gè)動(dòng)點(diǎn)P,Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P以4厘米/秒的速度沿AC向終點(diǎn)C運(yùn)動(dòng);點(diǎn)Q以5厘米/秒的速度沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)P作PE∥BC交AD于點(diǎn)E,連接EQ.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)CP=;(用t的代數(shù)式表示)
(2)連接CE,并運(yùn)用割補(bǔ)的思想表示△AEC的面積(用t的代數(shù)式表示);
(3)是否存在某一時(shí)刻t,使四邊形EQDP是平行四邊形,如果存在,請(qǐng)求出t,如果不存在,請(qǐng)說明理由;
(4)當(dāng)t為何值時(shí),△EDQ為直角三角形.發(fā)布:2025/6/7 17:0:1組卷:348引用:3難度:0.1