[項(xiàng)目學(xué)習(xí)]配方法是數(shù)學(xué)中重要的一種思想方法.它是指將一個(gè)式子的某部分通過恒等變形化為完全平方式或幾個(gè)完全平方式的和的方法,這種方法常被用到代數(shù)式的變形中,并結(jié)合非負(fù)數(shù)的意義來解決一些問題.
例如,把二次三項(xiàng)式x2-2x+3進(jìn)行配方.
解:x2-2x+3=x2-2x+1+2=(x2-2x+1)+2=(x-1)2+2.
我們定義:一個(gè)整數(shù)能表示成a2+b2(a,b是整數(shù))的形式,即兩個(gè)數(shù)的平方和形式,則稱這個(gè)數(shù)為“雅美數(shù)”例如,5是“雅美數(shù)”.理由:因?yàn)?=22+12.再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整數(shù)),所以M也是“雅美數(shù)”.
(1)[問題解決]4,6,7,8四個(gè)數(shù)中的“雅美數(shù)”是 4,84,8.
(2)若二次三項(xiàng)式x2-6x+13(x是整數(shù))是“雅美數(shù)”,可配方成(x-m)2+n(m,n為常數(shù)),則mn的值為 1212.
(3)[問題探究]已知S=x2+4y2+8x-12y+k(x,y是整數(shù),k是常數(shù)且x≠-4,y≠32),要使S為“雅美數(shù)”,試求出符合條件的k值.
(4)[問題拓展]已知實(shí)數(shù)M,N是“雅美數(shù)”,求證:M?N是“雅美數(shù)”.
y
≠
3
2
【考點(diǎn)】配方法的應(yīng)用.
【答案】4,8;12
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/23 11:0:11組卷:424引用:3難度:0.5
相似題
-
1.設(shè)x,y都是實(shí)數(shù),請(qǐng)?zhí)骄肯铝袉栴},
(1)嘗試:①當(dāng)x=-2,y=1時(shí),∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②當(dāng)x=1,y=2時(shí),∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③當(dāng)x=2,y=2.5時(shí),∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④當(dāng)x=3,y=3時(shí),∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)歸納:x2+y2與2xy有怎樣的大小關(guān)系?試說明理由.
(3)運(yùn)用:求代數(shù)式的最小值.x2+4x2發(fā)布:2025/5/21 17:30:1組卷:188引用:2難度:0.5 -
2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為( )
發(fā)布:2024/12/16 14:30:3組卷:102引用:3難度:0.9 -
3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( )
發(fā)布:2024/12/23 12:30:2組卷:397引用:9難度:0.4