2007-2008學(xué)年福建省莆田四中高二(上)模塊數(shù)學(xué)試卷(文科)
發(fā)布:2024/4/20 14:35:0
一、選擇題(每小題只有一個正確的選項(xiàng),12小題,共60分)
-
1.在復(fù)平面內(nèi),復(fù)數(shù)
對應(yīng)的點(diǎn)位于( ?。?/h2>1+ii組卷:291引用:43難度:0.9 -
2.設(shè)a,b,c∈R,則復(fù)數(shù)(a+bi)(c+di)為實(shí)數(shù)的充要條件是( ?。?/h2>
組卷:155引用:16難度:0.9 -
3.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是( ?。?/h2>
組卷:1203引用:72難度:0.9 -
4.如圖,正方體ABCD-A1B1C1D1的棱長為1,則A1到平面ABC1D1的距離為( ?。?/h2>
組卷:15引用:2難度:0.9 -
5.如果雙曲線的兩個焦點(diǎn)分別為F1(-3,0)、F2(3,0),一條漸近線方程為
,那么它的兩條準(zhǔn)線間的距離是( )y=2x組卷:283引用:11難度:0.9 -
6.拋物線x2=-4y的準(zhǔn)線方程是( ?。?/h2>
組卷:215引用:7難度:0.9 -
7.已知動點(diǎn)P,定點(diǎn)M(1,0)和N(3,0),若|PM|-|PN|=2,則點(diǎn)P的軌跡是( ?。?/h2>
組卷:52引用:3難度:0.9
三、解答題(6小題,共74分)
-
21.把邊長為60cm的正方形鐵皮的四角切去邊長為xcm的相等的正方形,然后折成一個高度為xcm的無蓋的長方體的盒子,要求長方體的高度與底面邊長的比值不超過常數(shù)k(k>0),
(1)用x和k表示出長方體的體積的表達(dá)式V=V(x),并給出函數(shù)的定義域;
(2)問x取何值時,盒子的容積最大,最大容積是多少?組卷:10引用:2難度:0.5 -
22.拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點(diǎn)在拋物線的準(zhǔn)線的右邊.
(1)求證:直線與拋物線總有兩個交點(diǎn);
(2)設(shè)直線與拋物線的交點(diǎn)為Q、R,OQ⊥OR,
求p關(guān)于m的函數(shù)f(m)的表達(dá)式;
(3)在(2)的條件下,若拋物線焦點(diǎn)F到直線x+y=m的距離為,22
求此直線的方程.組卷:48引用:1難度:0.1