2022年湖北省龍泉中學(xué)、宜昌一中、荊州中學(xué)等四校高考數(shù)學(xué)聯(lián)考試卷(一)
發(fā)布:2024/4/20 14:35:0
一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
-
1.已知集合A={x|-1≤x≤2},B={x|x>0},則A∩B=( ?。?/h2>
組卷:27引用:1難度:0.9 -
2.在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)為(1,-2),則
(1+i)=( )z組卷:47引用:1難度:0.8 -
3.若
是函數(shù)f(x)=cosωx(ω≠0)圖象的對稱軸,則f(x)的最小正周期的最大值是( ?。?/h2>x=π3組卷:44引用:1難度:0.7 -
4.已知函數(shù)
,關(guān)于函數(shù)f(x)的結(jié)論正確的是( ?。?/h2>f(x)=x+2,x≤-1x2,-1<x<2組卷:204引用:3難度:0.8 -
5.過拋物線y2=px,(p>0)的焦點(diǎn)F作直線l,交拋物線于A,B兩點(diǎn),若|FA|=3|FB|,則直線l的傾斜角等于( ?。?/h2>
組卷:97引用:1難度:0.6 -
6.已知從點(diǎn)(-5,3)發(fā)出的一束光線,經(jīng)x軸反射后,反射光線恰好平分圓:(x-1)2+(y-1)2=5的圓周,則反射光線所在的直線方程為( )
組卷:581引用:8難度:0.7 -
7.有一個非常有趣的數(shù)列
叫做調(diào)和數(shù)列,此數(shù)列的前n項(xiàng)和已經(jīng)被研究了幾百年,但是迄今為止仍然沒有得到它的求和公式,只是得到它的近似公式:當(dāng)n很大時,{1n},其中γ稱為歐拉-馬歇羅尼常數(shù),γ≈0.577215664901…,至今為止都還不確定γ是有理數(shù)還是無理數(shù).由于上式在n很大時才成立,故當(dāng)n較小時計算出的結(jié)果與實(shí)際值之間是存在一定誤差的,已知ln2≈0.693,ln3≈1.099.用上式估算出的ln6與實(shí)際的ln6的誤差絕對值近似為( )1+12+13+…+1n≈lnn+γ組卷:82引用:3難度:0.6
四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或驗(yàn)算步驟.
-
21.已知橢圓
的焦距為4,上頂點(diǎn)為A,右焦點(diǎn)為F,原點(diǎn)O到直線AF的距離為C:x2a2+y2b2=1(a>2>b>0).255
(1)求橢圓C的方程;
(2)過點(diǎn)F的直線l與C交于M,N兩點(diǎn),過點(diǎn)M作x軸垂線,垂足為E,過點(diǎn)N作x軸垂線,垂足為Q,QM與NE交于點(diǎn)P,是否存在直線l使得△PMN的面積等于,若存在,求出直線l的方程;若不存在,請說明理由.520組卷:49引用:1難度:0.6 -
22.已知函數(shù)f(x)=lnx+(m-e)x-1(m∈R,e≈2.718281…).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若關(guān)于x的不等式f(x)-xex+2≤0恒成立,求實(shí)數(shù)m的取值范圍.組卷:91引用:3難度:0.5