2023-2024學(xué)年湖南省懷化市溆浦一中九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)
發(fā)布:2024/9/16 16:0:8
一、單選題(3×10=30分)
-
1.已知關(guān)于x的一元二次方程2x2+mx-3=0的一個(gè)根是-1,則另一個(gè)根是( )
組卷:446引用:5難度:0.6 -
2.若點(diǎn)A(m2,y1),B(m2+2,y2)在反比例函數(shù)y=
的圖象上,則y1,y2的大小關(guān)系是( ?。?/h2>4x組卷:354引用:6難度:0.7 -
3.九年級(jí)舉辦籃球友誼賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng),共要比賽45場(chǎng),則參加此次比賽的球隊(duì)數(shù)是( ?。?/h2>
組卷:170引用:4難度:0.5 -
4.如圖,DC∥EF∥AB,若
=EGAB,DC=6,則GF的長(zhǎng)為( ?。?/h2>12組卷:54引用:2難度:0.7 -
5.在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與
(其中a,b是常數(shù),ab≠0)的大致圖象是( )y=bax組卷:3107引用:15難度:0.6 -
6.若關(guān)于x的一元二次方程(k-2)x2-2kx+k=6有實(shí)數(shù)根,則k的取值范圍為( ?。?/h2>
組卷:1828引用:28難度:0.6 -
7.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若AC:AB=2:5,則S△ADC:S△BDC是( ?。?/h2>
組卷:202引用:4難度:0.7
選擇題
-
8.數(shù)學(xué)活動(dòng)小組到某廣場(chǎng)測(cè)量標(biāo)志性建筑AB的高度.如圖,他們?cè)诘孛嫔螩點(diǎn)測(cè)得最高點(diǎn)A的仰角為22°,再向前70m至D點(diǎn),又測(cè)得最高點(diǎn)A的仰角為58°,點(diǎn)C,D,B在同一直線上,則該建筑物AB的高度約為( ?。?br />(精確到1m.參考數(shù)據(jù):sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
組卷:2850引用:10難度:0.5
三、解答題(共66分)
-
24.如圖,在平面直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)A在x軸上,OB=5,OA=4,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,沿AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度,沿OB向終點(diǎn)B移動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了x(0<x<2.5)秒時(shí),解答下列問題:
(1)若點(diǎn)B在反比例函數(shù)y=(x>0)的圖象上,求出該函數(shù)的解析式;kx
(2)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)過程中,當(dāng)x為何值時(shí),使得以O(shè),M,N為頂點(diǎn)的三角形與△OAB相似?組卷:361引用:2難度:0.2 -
25.[基礎(chǔ)鞏固](1)如圖1,在△ABC中,D為AB上一點(diǎn),∠ACD=∠B,求證:AC2=AD?AB;
[嘗試應(yīng)用](2)如圖2,在?ABCD中,E為BC上一點(diǎn),F(xiàn)為CD延長(zhǎng)線上一點(diǎn),∠BFE=∠A,若BF=5,BE=3,求AD的長(zhǎng);
[拓展提高](3)在菱形ABCD中,E是AB上一點(diǎn),F(xiàn)是△ABC內(nèi)一點(diǎn),EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=6,求菱形ABCD的邊長(zhǎng).12組卷:276引用:3難度:0.2