2023-2024學(xué)年江蘇省揚(yáng)州市邗江區(qū)第三共同體九年級(jí)(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/10 7:0:2
一、單選題(本題共8小題,每小題3分,共24分.)
-
1.下列方程是一元二次方程的是( ?。?/h2>
組卷:73引用:8難度:0.9 -
2.把方程x2+2x-3=0配方后,可變形為( )
組卷:135引用:6難度:0.6 -
3.若關(guān)于x的一元二次方程x2-3x+a=0有兩個(gè)不相等的實(shí)數(shù)根,則a的值不可能是( )
組卷:205引用:6難度:0.6 -
4.如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,∠BDC=25°,則∠AOC的大小為( ?。?/h2>
組卷:70引用:2難度:0.7 -
5.如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接等邊三角形,點(diǎn)DE在⊙O上.四邊形BCDE為平行四邊形,則平行四邊形BCDE的面積是( ?。?/h2>
組卷:125引用:2難度:0.5 -
6.下列命題:①長(zhǎng)度相等的弧是等弧 ②任意三點(diǎn)確定一個(gè)圓 ③相等的圓心角所對(duì)的弦相等 ④外心在三角形的一條邊上的三角形是直角三角形,其中真命題有( ?。?/h2>
組卷:690引用:21難度:0.9 -
7.如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)P為邊AD上任意一點(diǎn)(點(diǎn)P不與點(diǎn)A,D重合),連接CP.若∠B=150°,則∠APC的度數(shù)不可能為( )
組卷:291引用:5難度:0.7 -
8.如圖,在平面直角坐標(biāo)系xOy中,A(-3,0),B(3,0),若在直線y=-x+m上存在點(diǎn)P滿足∠APB=60°,則m的取值范圍是( ?。?/h2>
組卷:888引用:5難度:0.6
二、填空題(本大題共有10小題,每小題3分,共30分.)
-
9.已知關(guān)于x的一元二次方程x2+kx-3=0的一個(gè)根是x=1,則另一個(gè)根是 .
組卷:194引用:3難度:0.5
三、解答題(本大題共有10小題,共96分.)
-
27.我們定義:如果圓的兩條弦互相垂直且相交,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如圖(1),已知⊙O的兩條弦AB⊥CD,則AB、CD互為“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.
【概念理解】
(1)若⊙O的半徑為5,一條弦AB=8,則弦AB的“十字弦”CD的最大值為 ,最小值為 .
(2)如圖2,若⊙O的弦CD恰好是⊙O的直徑,弦AB與CD相交于H,連接AC,若AC=12,DH=7,CH=9,求證:AB、CD互為“十字弦”;
【問(wèn)題解決】
(3)如圖3,在⊙O中,半徑為,弦AB與CD相交于H,AB、CD互為“十字弦”且AB=CD,13,則CD的長(zhǎng)度 .CHDH=5組卷:577引用:4難度:0.3 -
28.綜合實(shí)踐課上,劉老師介紹了四點(diǎn)共圓的判定定理:若平面上四點(diǎn)連成四邊形的對(duì)角互補(bǔ)或一個(gè)外角等于其內(nèi)對(duì)角,那么這四點(diǎn)共圓.在實(shí)際應(yīng)用中,如果運(yùn)用這個(gè)定理,往往可以讓復(fù)雜的問(wèn)題簡(jiǎn)單化,以下是小明同學(xué)對(duì)一道四邊形問(wèn)題的分析,請(qǐng)幫助他補(bǔ)充完整.
特殊情況分析
(1)如圖1,正方形ABCD中,點(diǎn)P為對(duì)角線AC上一個(gè)動(dòng)點(diǎn),連接PD,將射線PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)∠ADC的度數(shù),交直線BC于點(diǎn)Q.
小明的思考如下:連接DQ,
∵AD∥CQ,∠ADC=∠DCQ=90°,
∴∠ACQ=∠DAC,(依據(jù)1)
∵∠DPQ=90°,
∴∠DPQ+∠DCQ=180°,
∴點(diǎn)D、P、Q、C共圓,
∴∠PDQ=∠PCQ,∠DQP=∠PCD,(依據(jù)2)
∴∠PDQ=∠DQP,
∴DP=QP.(依據(jù)3)
②依據(jù)2應(yīng)為 ,
③依據(jù)3應(yīng)為 ;
一般結(jié)論探究
(2)將圖1中的正方形ABCD改為菱形ABCD,其他條件不變,(1)中的結(jié)論是否成立,若成立,請(qǐng)僅以圖2的形式證明,若不成立,請(qǐng)說(shuō)明理由;
結(jié)論拓展延伸
(3)若∠ADC=120°,AD=3,當(dāng)△PQC為直角三角形時(shí),請(qǐng)直接寫(xiě)出線段PQ的長(zhǎng).組卷:304引用:4難度:0.2