2023-2024學年云南省昆明三中高一(上)期中數(shù)學試卷
發(fā)布:2024/10/7 13:0:2
一、單項選擇題:本大題共8小題,每小題5分,共40分.
-
1.設集合A={x|-2≤x<2},B={-2,-1,0,1,2},則A∩B=( ?。?/h2>
組卷:9引用:3難度:0.8 -
2.“x>6,y>6”是“x+y>12”的( )
組卷:18引用:2難度:0.8 -
3.已知集合P={1,2,4,5,6},M={2,4,6},則下列說法正確的是( ?。?/h2>
組卷:25引用:4難度:0.7 -
4.如果0<x<1,則下列不等式成立的是( ?。?/h2>
組卷:39引用:4難度:0.7 -
5.下列關于x,y的關系中為函數(shù)的是( )
組卷:1422引用:6難度:0.8 -
6.若命題“?x∈R,x2+2mx+m+2≥0”為真命題,則m的取值范圍是( ?。?/h2>
組卷:53引用:2難度:0.8 -
7.若偶函數(shù)f(x)在(0,+∞)上單調遞減,且f(2)=0,則不等式
<0的解集為( )f(x)+f(-x)3x組卷:258引用:7難度:0.6
四、解答題:本大題共6小題,共70分.
-
21.為助力鄉(xiāng)村振興,某村決定建一果袋廠.經過市場調查,生產需投入年固定成本為2萬元,每生產x萬件,需另投入流動成本為W(x)萬元,在年產量不足8萬件時,
(萬元).在年產量不小于8萬件時,W(x)=13x2+2x(萬元).每件產品售價為6元.通過市場分析,該廠生產的果袋能當年全部售完.W(x)=7x+100x-37
(1)寫出年利潤Q(x)(萬元)關于年產量x(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動成本)
(2)年產量為多少萬件時,該廠所獲利潤最大?最大利潤是多少?組卷:34引用:5難度:0.6 -
22.對于函數(shù)f(x),若在定義域內存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2x-4a,a∈R,試判斷f(x)是否為“局部奇函數(shù)”,并說明理由;
(2)若f(x)=4x-m?2x+1+m2-1為定義在R上的“局部奇函數(shù)”,求函數(shù)f(x)在x∈[-1,1]的最小值.組卷:289引用:4難度:0.5