在學(xué)習(xí)完《圖形的旋轉(zhuǎn)》后,劉老師帶領(lǐng)學(xué)生開展了一次數(shù)學(xué)探究活動.
【問題情境】
劉老師先引導(dǎo)學(xué)生回顧了華東師大版教材七年級下冊第121頁“探索”部分內(nèi)容:
如圖1,將一個三角形紙板△ABC繞點A逆時針旋轉(zhuǎn)θ到達(dá)的位置△AB′C′的位置,那么可以得到:
AB=AB′,AC=AC′,BC=B′C′;
∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)
劉老師進(jìn)一步談到:圖形的旋轉(zhuǎn)蘊(yùn)含于自然界的運(yùn)動變化規(guī)律中,即“變”中蘊(yùn)含著“不變”,這是我們解決圖形旋轉(zhuǎn)的關(guān)鍵.故數(shù)學(xué)就是一門哲學(xué).
【問題解決】
(1)上述問題情境中“(_____)”處應(yīng)填理由:旋轉(zhuǎn)前后的圖形對應(yīng)線段相等,對應(yīng)角相等旋轉(zhuǎn)前后的圖形對應(yīng)線段相等,對應(yīng)角相等;
(2)如圖2,小王將一個半徑為4cm,圓心角為60°的扇形紙板ABC繞點O逆時針旋轉(zhuǎn)90°到達(dá)扇形紙板A′B′C′的位置.
①請在圖中作出點O;
②如果BB′=6cm,則在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑長為 32π2cm32π2cm;
【問題拓展】
小李突發(fā)奇想,將與(2)中完全相同的兩個扇形紙板重疊,一個固定在墻上,使得一邊位于水平位置.另一個在弧的中點處固定,然后放開紙板,使其擺動到豎直位置時靜止.此時,兩個紙板重疊部分的面積是多少呢?如圖3所示,請你幫助小李解決這個問題.
![](https://img.jyeoo.net/quiz/images/svg/202306/439/ed028716.png)
3
2
π
2
3
2
π
2
【考點】圓的綜合題.
【答案】旋轉(zhuǎn)前后的圖形對應(yīng)線段相等,對應(yīng)角相等;cm
3
2
π
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/12 8:0:9組卷:883引用:5難度:0.1
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉(zhuǎn),得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當(dāng)GM=GD時,求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3
相關(guān)試卷