已知函數(shù)f(x)=ex-b和g(x)=x+a-b2,其中a,b為常數(shù)且b>0.
(1)當(dāng)b=1時,求曲線y=f(x)在x=1處的切線方程;
(2)若存在斜率為1的直線與曲線y=f(x)和y=g(x)都相切,求a+b的取值范圍.
g
(
x
)
=
x
+
a
-
b
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/20 8:0:8組卷:38引用:3難度:0.4
相似題
-
1.設(shè)函數(shù)f(x)=x(ex+ae-x)的導(dǎo)函數(shù)為f′(x),若f′(x)是奇函數(shù),則曲線y=f(x)在點(1,f(1))處切線的斜率為( )
發(fā)布:2024/12/14 4:0:2組卷:31引用:3難度:0.6 -
2.函數(shù)f(x)=cosx-
的圖象的切線斜率可能為( ?。?/h2>1x發(fā)布:2024/12/16 11:30:4組卷:204引用:6難度:0.7 -
3.函數(shù)y=f(x)在P(1,f(1))處的切線如圖所示,則f(1)+f′(1)=( )
發(fā)布:2024/12/15 14:30:2組卷:1156引用:10難度:0.7
把好題分享給你的好友吧~~