一個(gè)四位正整數(shù)M,各個(gè)數(shù)位上的數(shù)字互不相等且均不為零,若千位與十位數(shù)字之和等于百位與個(gè)位數(shù)字之和均為9,則稱M為“行知數(shù)”.此時(shí),規(guī)定K(M)=M99.例如,M=1386,∵1+8=3+6=9,∴M=1386是“行知數(shù)”,K(1386)=138699=14;又如,M=3562,∵3+6=9≠5+2,∴M=3562不是“行知數(shù)”.
(1)判斷2475和4256是否是“行知數(shù)”,并說明理由;
(2)對(duì)于“行知數(shù)”M,交換其千位與十位的數(shù)字,同時(shí)交換其百位與個(gè)位的數(shù)字,得到一個(gè)新的“行知數(shù)”M′.若2K(M)+K(M′)8是整數(shù),且M的千位數(shù)字不小于十位數(shù)字,求滿足條件的所有“行知數(shù)”M.
M
99
1386
99
2
K
(
M
)
+
K
(
M
′
)
8
【考點(diǎn)】因式分解的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:335引用:2難度:0.3
相似題
-
1.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個(gè)棱長為a的大正方體進(jìn)行以下探索:
(1)在大正方體一角截去一個(gè)棱長為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為 .
(2)將圖1中的幾何體分割成三個(gè)長方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長方體①的體積為ab(a-b),類似地,長方體②的體積為 ,長方體③的體積為 ;(結(jié)果不需要化簡)
(3)將表示長方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為 .
(4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為 .
(5)已知a-b=4,ab=2,求a3-b3的值.發(fā)布:2024/12/23 14:0:1組卷:276引用:3難度:0.4 -
2.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2494引用:25難度:0.6 -
3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:383引用:7難度:0.6
把好題分享給你的好友吧~~