數(shù)學(xué)書第69頁數(shù)學(xué)活動《折紙與證明》中提到:折紙,常常能夠為證明一個命題提供思路和方法.
【操作】
操作①:對折長方形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開(如圖1).
操作②:再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,連接AN(如圖2).
【思考】
(1)A、B關(guān)于直線EF對稱,AN與BN的大小關(guān)系是 AN=BNAN=BN;A、N關(guān)于BM對稱,則AB與BN的大小關(guān)系是 AB=BNAB=BN.
【探究】
(2)若延長MN交BC于點P,如圖3所示,試判定△BMP的形狀,并證明你的結(jié)論.
【考點】四邊形綜合題.
【答案】AN=BN;AB=BN
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/9 0:0:2組卷:52引用:1難度:0.3
相似題
-
1.如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s,連接PQ,設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當(dāng)t為何值時,PQ∥BC.
(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.
(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:866引用:2難度:0.1 -
2.如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s,連接PQ,設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當(dāng)t為何值時,PQ∥BC.
(2)設(shè)四邊形BCQP的面積為S(單位:cm 2),求s與t之間的函數(shù)關(guān)系式.
(3)如圖2把△APQ沿AP翻折,得到四邊形AQPQ′那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:290引用:2難度:0.5 -
3.如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E在BC的延長線上,連接DE,點F是DE的中點,連接OF交CD于點G,連接CF,若CE=4,OF=6.則下列結(jié)論:①GF=2;②OD=
OG;③tan∠CDE=2;④∠ODF=∠OCF=90°;⑤點D到CF的距離為12.其中正確的結(jié)論是( )855發(fā)布:2024/12/19 5:30:4組卷:1541引用:8難度:0.4
把好題分享給你的好友吧~~