如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點.
(1)求拋物線的解析式;
(2)如圖①,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最小?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求點M的坐標;若不存在,請說明理由.

【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:4798引用:62難度:0.5
相似題
-
1.已知:將函數(shù)
的圖象向上平移2個單位,得到一個新的函數(shù)圖象.y=33x
(1)寫出這個新的函數(shù)的解析式;
(2)若平移前后的這兩個函數(shù)圖象分別與y軸交于O,A兩點,與直線交于C,B兩點.試判斷以A,B,C,O四點為頂點四邊形狀,并說明理由;x=-3
(3)若(2)中的四邊形(不包括邊界)始終覆蓋著二次函數(shù)的圖象一部分,求滿足條件的實數(shù)b的取值范圍.y=x2-2bx+b2+12發(fā)布:2025/6/9 20:30:1組卷:51引用:5難度:0.1 -
2.如圖,在平面直角坐標系中,四邊形OABC為菱形,點C的坐標為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線l與菱形OABC的兩邊分別交于點M、N(點M在點N的上方).
(1)求A、B兩點的坐標;
(2)設(shè)△OMN的面積為S,直線l運動時間為t秒(0≤t≤6),試求S與t的函數(shù)表達式;
(3)在題(2)的條件下,t為何值時,S的面積最大?最大面積是多少?發(fā)布:2025/6/9 17:0:1組卷:570引用:26難度:0.1 -
3.如圖,已知拋物線y=
x2+bx+c經(jīng)過點A(-1,0)、B(5,0).13
(1)求拋物線的解析式,并寫出頂點M的坐標;
(2)若點C在拋物線上,且點C的橫坐標為8,求四邊形AMBC的面積;
(3)定點D(0,m)在y軸上,若將拋物線的圖象向左平移2個單位,再向上平移3個單位得到一條新的拋物線,點P在新的拋物線上運動,求定點D與動點P之間距離的最小值d(用含m的代數(shù)式表示)發(fā)布:2025/6/9 18:30:1組卷:1924引用:6難度:0.2
相關(guān)試卷