閱讀以下文字并解決問題:
【方法呈現(xiàn)】
形如x2+2ax+a2這樣的二次三項(xiàng)式,我們可以直接用公式法把它分解成(x+a)2的形式,但對(duì)于二次三項(xiàng)式x2+6x-27,就不能直接用公式法分解了,此時(shí),我們可以在x2+6x-27中間先加上一項(xiàng)9,使它與x2+6x的和構(gòu)成一個(gè)完全平方式,然后再減去9,則整個(gè)多項(xiàng)式的值不變.即:x2+6x-27=(x2+6x+9)-9-27=(x+3)2-62=(x+3+6)(x+3-6)=(x+9)(x-3),像這樣,把一個(gè)二次三項(xiàng)式變成含有完全平方式的形式的方法,叫做配方法.
同樣地,把一個(gè)多項(xiàng)式進(jìn)行局部因式分解可以來解決代數(shù)式值的最?。ɑ蜃畲螅﹩栴}.
例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,∵(x+1)2≥0,∴(x+1)2+2≥2.
則這個(gè)代數(shù)式x2+2x+3的最小值是2,這時(shí)相應(yīng)的x的值是-1.
【嘗試應(yīng)用】
(1)利用“配方法”因式分解:x2+2xy-3y2.
(2)求代數(shù)式x2-14x+10的最小(或最大)值,并寫出相應(yīng)的x的值.
【考點(diǎn)】因式分解的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】(1)(x+3y)(x-y);
(2)-39.
(2)-39.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:514引用:4難度:0.7
相似題
-
1.若一個(gè)四位數(shù)M的個(gè)位數(shù)字與十位數(shù)字的和與它們的差之積恰好是M去掉個(gè)位數(shù)字與十位數(shù)字后得到的兩位數(shù),則這個(gè)四位數(shù)M為“和差數(shù)”.
例如:M=1514,∵(4+1)(4-1)=15,∴1514是“和差數(shù)”.
又如:M=2526,∵(6+2)(6-2)=32≠25,∴2526不是“和差數(shù)”.
(1)判斷2022,2046是否是“和差數(shù)”,并說明理由;
(2)一個(gè)“和差數(shù)”M的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個(gè)位數(shù)字為d,記,且G(M)=dc.當(dāng)G(M),P(M)均是整數(shù)時(shí),求出所有滿足條件的M.P(M)=Mc+d發(fā)布:2025/5/24 7:30:1組卷:222引用:1難度:0.4 -
2.已知ab=3,a+b=4,則代數(shù)式a3b+ab3的值為 .
發(fā)布:2025/5/24 4:30:1組卷:151引用:2難度:0.7 -
3.材料:一個(gè)兩位數(shù)記為x,另外一個(gè)兩位數(shù)記為y,規(guī)定F(x,y)=
,當(dāng)F(x,y)為整數(shù)時(shí),稱這兩個(gè)兩位數(shù)互為“均衡數(shù)”.x+y7
例如:x=42,y=21,則F(42,21)==9,所以42,21互為“均衡數(shù)”,又如x=54,y=43,F(xiàn)(54,43)=42+217不是整數(shù),所以54,43不是互為“均衡數(shù)”.54+437
(1)請(qǐng)判斷40,41和52,17是不是互為“均衡數(shù)”,并說明理由.
(2)已知x,y是互為“均衡數(shù)”,且x=10a+b,y=20a+2b+c+5,(1≤a≤4,1≤b≤4,0≤c≤4,且a、b、c為整數(shù)),規(guī)定G(x,y)=2x-y.若G(x,y)除以7余數(shù)為2,求出F(x,y)值.發(fā)布:2025/5/24 8:30:1組卷:205引用:2難度:0.4