設(shè)A,B為雙曲線C:x2a2-y2b2=1(a>b>0)的左、右頂點(diǎn),直線l過右焦點(diǎn)F且與雙曲線C的右支交于M,N兩點(diǎn),當(dāng)直線l垂直于x軸時(shí),△AMN為等腰直角三角形.
(1)求雙曲線C的離心率;
(2)已知AB=4,若直線AM,AN分別交直線x=1于P,Q兩點(diǎn),若D(t,0)為x軸上一動(dòng)點(diǎn),當(dāng)直線l的傾斜角變化時(shí),若∠PDQ為銳角,求t的取值范圍.
x
2
a
2
y
2
b
2
【考點(diǎn)】雙曲線的幾何特征.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:239引用:6難度:0.4
相似題
-
1.若雙曲線
-x28=1的漸近線方程為y=±2x,則實(shí)數(shù)m等于( ?。?/h2>y2m發(fā)布:2025/1/5 18:30:5組卷:26引用:1難度:0.9 -
2.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點(diǎn),P是它們的公共點(diǎn),且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( ?。?/h2>4e1e23e12+e22發(fā)布:2025/1/2 23:30:3組卷:200引用:2難度:0.5 -
3.已知雙曲線
的右焦點(diǎn)為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實(shí)軸長為( )3x±y=0發(fā)布:2025/1/2 19:0:5組卷:136引用:2難度:0.7