已知函數(shù)f(x)=lnx-ax+1-ax-1(a∈R).
(Ⅰ)當a≤12時,討論f(x)的單調(diào)性;
(Ⅱ)設g(x)=x2-2bx+4.當a=14時,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)b取值范圍.
1
-
a
x
1
2
1
4
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1750引用:34難度:0.5
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導數(shù),則關于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2