根據(jù)圓錐曲線的光學性質(zhì):從雙曲線的一個焦點發(fā)出的光線,經(jīng)雙曲線反射后,反射光線的反向延長線過雙曲線的另一個焦點.由此可得,過雙曲線上任意一點的切線,平分該點與兩焦點連線的夾角.請解決下面問題:已知F1,F(xiàn)2分別是雙曲線C:x2-y22=1的左、右焦點,若從點F2發(fā)出的光線經(jīng)雙曲線右支上的點A(x0,2)反射后,反射光線為射線AM,則∠F2AM的角平分線所在的直線的斜率為( ?。?/h1>
x
2
-
y
2
2
=
1
【考點】雙曲線的幾何特征.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:196引用:5難度:0.6
相似題
-
1.雙曲線
的焦點到漸近線的距離為( ?。?/h2>x25-y2=1發(fā)布:2024/12/20 12:0:3組卷:63引用:1難度:0.7 -
2.雙曲線
的右焦點恰是拋物線y2=2px(p>0)的焦點F,雙曲線與拋物線在第一象限交于點A(2,m),若|AF|=5,則雙曲線的方程為( ?。?/h2>x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/12/20 20:30:1組卷:228引用:3難度:0.6 -
3.過雙曲線
的左頂點,且與直線2x-y+1=0平行的直線方程為 .x24-y23=1發(fā)布:2024/12/20 0:0:1組卷:49引用:5難度:0.7
把好題分享給你的好友吧~~