課題學(xué)習(xí):平行線的“等角轉(zhuǎn)化”功能.
閱讀理解:
如圖1,已知點(diǎn)A是BC外一點(diǎn),連接AB,AC,求∠BAC+∠B+∠C的度數(shù).
(1)閱讀并補(bǔ)充下面推理過程.
解:過點(diǎn)A作ED∥BC.
∴∠B=∠EAB,∠C=∠DAC∠DAC.
∵∠EAB+∠BAC+∠DAC∠EAB+∠BAC+∠DAC=180°.
∴∠B+∠BAC+∠C=180°.
解題反思:從上面的推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關(guān)系,使問題得以解決.
方法運(yùn)用:
(2)如圖2,已知AB∥ED,求證:∠D+∠BCD-∠B=180°(提示:過點(diǎn)C作CF∥AB).
深化拓展:
(3)已知AB∥CD,點(diǎn)C在點(diǎn)D的右側(cè),∠ADC=60°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點(diǎn)E,點(diǎn)E在AB與CD兩條平行線之間.
①如圖3,點(diǎn)B在點(diǎn)A的左側(cè),若∠ABC=50°,求∠BED的度數(shù).
②如圖4,點(diǎn)B在點(diǎn)A的右側(cè),且AB<CD,AD<BC.若∠ABC=100°,則∠BED的度數(shù)為 160160°.
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】∠DAC;∠EAB+∠BAC+∠DAC;160
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/10 8:0:8組卷:660引用:6難度:0.5
相似題
-
1.錢塘江汛期即將來臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖,燈A射線自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿足|a-3b|+(a+b-4)2=0.假定這一帶長江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a、b的值;
(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前,若射出的光束交于點(diǎn)C,過C作CD⊥AC交PQ于點(diǎn)D,則在轉(zhuǎn)動(dòng)過程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請求出其取值范圍.發(fā)布:2024/12/23 19:30:2組卷:876引用:7難度:0.4 -
2.如圖,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求證:AD平分∠BAC.
發(fā)布:2024/12/23 19:30:2組卷:876引用:15難度:0.3 -
3.如圖,∠ABC+∠ECB=180°,∠P=∠Q.
求證:∠1=∠2.
根據(jù)圖形和已知條件,請補(bǔ)全下面這道題的解答過程.
證明:∵∠ABC+∠ECB=180° ,
∴AB∥ED .
∴∠ABC=∠BCD .
又∵∠P=∠Q(已知),
∴PB∥.
∴∠PBC=.
又∵∠1=∠ABC-,∠2=∠BCD-,
∴∠1=∠2(等量代換).發(fā)布:2024/12/23 20:0:2組卷:984引用:10難度:0.7