在等邊△ABC中,線段AM為BC邊上的中線.動點(diǎn)D在直線AM上時,以CD為一邊在CD的下方作等邊△CDE,連接BE.
(1)若點(diǎn)D在線段AM上時(如圖1),則AD ==BE(填“>”、“<”或“=”),∠CAM=3030度;
(2)設(shè)直線BE與直線AM的交點(diǎn)為O.
①當(dāng)動點(diǎn)D在線段AM的延長線上時(如圖2),試判斷AD與BE的數(shù)量關(guān)系,并說明理由;
②當(dāng)動點(diǎn)D在直線AM上時,試判斷∠AOB是否為定值?若是,請直接寫出∠AOB的度數(shù);若不是,請說明理由.

【考點(diǎn)】三角形綜合題.
【答案】=;30
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/6 4:0:8組卷:1541引用:12難度:0.3
相似題
-
1.綜合與實(shí)踐:
問題情境:數(shù)學(xué)活動課上,王老師出示了一個問題:
如圖1,直線m∥n,點(diǎn)A、B在直線m上(點(diǎn)B在點(diǎn)A的下方),過點(diǎn)A作AC⊥n于點(diǎn)C,連接BC,以C為圓心CA為半徑作弧,交直線n于點(diǎn)D,交BC于點(diǎn)E.求證:∠ABC=2∠CDE.
獨(dú)立思考:(1)請解答王老師提出的問題.
實(shí)踐探究:(2)DE與AC交于點(diǎn)P,在原有問題條件不變的情況下,王老師提出新問題,請你解答.
“猜想出AB、BC、PC的數(shù)量關(guān)系,并證明.”
問題解決:(3)過點(diǎn)D作DQ∥BC交m于點(diǎn)Q(點(diǎn)Q在點(diǎn)A上方),數(shù)學(xué)活動小組同學(xué)對上述問題進(jìn)行特殊化研究之后發(fā)現(xiàn),當(dāng)AQ=BE時,線段BE和AB有一定的數(shù)量關(guān)系,該小組提出下面的問題,請你解答.
“如圖2,當(dāng)AQ=BE時,求的值.”DPAB發(fā)布:2025/6/14 20:0:1組卷:171引用:2難度:0.1 -
2.如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時,點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動.
①若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請說明理由.
②若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為 cm/s時,在某一時刻也能夠使△BPD與△CPQ全等.
(2)若點(diǎn)Q以②中的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時出發(fā),都按逆時針方向沿△ABC的三邊運(yùn)動.求經(jīng)過多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫出第一次相遇點(diǎn)在△ABC的哪條邊上?發(fā)布:2025/6/14 20:0:1組卷:112引用:2難度:0.3 -
3.如圖1,在△ABC中,∠A=40°,外角平分線BN和CN相交于點(diǎn)N,求∠BNC的度數(shù).
?
(1)請你先完成這個問題的解答.小明在完成以上問題的解答后,作如下變式探究:
(2)如圖2,在△ABC中,∠A=80°,若∠CBN=∠CBE,∠BCM=38∠BCD,BN與CM交于點(diǎn)O,求∠BOC的度數(shù).38
(3)如圖3,在△ABC中,∠A=n°,若∠CBN=∠CBE,∠BCM=34∠BCD,當(dāng)射線CM與BN相交時,n的取值范圍是什么?試說明理由.34發(fā)布:2025/6/14 20:0:1組卷:257引用:2難度:0.4