已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,傾斜角為30°的直線l經過橢圓C的右焦點且與圓E:x2+y2=34相切.
(1)求橢圓C的方程;
(2)若直線y=kx+m(k≠0)與圓E相切于點P,且交橢圓C于A,B兩點,射線OP于橢圓C交于點Q,設△OAB的面積于△QAB的面積分別為S1,S2.
①求S1的最大值;
②當S1取得最大值時,求S1S2的值.
x
2
a
2
+
y
2
b
2
3
2
3
4
S
1
S
2
【考點】橢圓的幾何特征.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:254難度:0.1
相似題
-
1.已知橢圓
=1(a>b>0)的一個焦點為F(2,0),橢圓上一點P到兩個焦點的距離之和為6,則該橢圓的方程為( ?。?/h2>x2a2+y2b2發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7 -
2.已知橢圓C的兩焦點分別為
、F1(-22,0),長軸長為6.F2(22,0)
(1)求橢圓C的標準方程;
(2)求以橢圓的焦點為頂點,以橢圓的頂點為焦點的雙曲線的方程.發(fā)布:2024/12/29 11:30:2組卷:434引用:6難度:0.8 -
3.阿基米德(公元前287年-公元前212年)不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在x軸上,且橢圓C的離心率為
,面積為8π,則橢圓C的方程為( ?。?/h2>32發(fā)布:2024/12/29 12:0:2組卷:227引用:7難度:0.5