已知雙曲線:x2-y2=1,點(diǎn)M為雙曲線C右支上一點(diǎn),A、B為雙曲線C的左、右頂點(diǎn),直線AM與y軸交于點(diǎn)D,點(diǎn)Q在x軸正半軸上,點(diǎn)E在y軸上.
(1)若點(diǎn)M(2,3),Q(2,0),過點(diǎn)Q作BM的垂線l交該雙曲線C于S,T兩點(diǎn),求△OST的面積;
(2)若點(diǎn)M不與B重合,從下面①②③中選取兩個作為條件,證明另外一個成立.
①OD=DE;②BM⊥EQ;③|OQ|=2.
注:若選擇不同的組合分別解答,則按第一個解答計(jì)分.
3
OD
=
DE
【考點(diǎn)】雙曲線與平面向量.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:276引用:5難度:0.6
相似題
-
1.雙曲線Γ:
的一條漸近線與圓:x2+y2=16交于第一象限的一點(diǎn)M,記雙曲線Γ的右焦點(diǎn)為F,左頂點(diǎn)為A,則x24-y212=1的值為( ?。?/h2>MA?MF發(fā)布:2024/12/18 4:30:1組卷:65引用:4難度:0.7 -
2.F1、F2是雙曲線
的左、右焦點(diǎn),點(diǎn)M為雙曲線E右支上一點(diǎn),點(diǎn)N在x軸上,滿足∠F1MN=∠F2MN=60°,若E:x2a2-y2b2=1(a,b>0),則雙曲線E的離心率為( )3MF1+5MF2=λMN(λ∈R)發(fā)布:2024/12/20 13:30:1組卷:247引用:4難度:0.5 -
3.已知雙曲線
的左、右焦點(diǎn)分別是F1,F(xiàn)2,雙曲線C上有兩點(diǎn)A,B滿足C:x2a2-y2b2=1(a>0,b>0),且OA+OB=0,若四邊形F1AF2B的周長l與面積S滿足∠F1AF2=2π3,則雙曲線C的離心率為( ?。?/h2>3l2=80S發(fā)布:2024/12/10 1:0:1組卷:173引用:5難度:0.5
把好題分享給你的好友吧~~