已知函數(shù)f(x)=2+x+2-x.
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)=a2[f2(x)-4]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若-m2+2mt+2≤g(a)對(duì)任意a∈(-∞,0)及任意t∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.
f
(
x
)
=
2
+
x
+
2
-
x
F
(
x
)
=
a
2
[
f
2
(
x
)
-
4
]
+
f
(
x
)
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/19 2:0:2組卷:35引用:1難度:0.5
相似題
-
1.把符號(hào)
稱為二階行列式,規(guī)定它的運(yùn)算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對(duì)?x∈[-1,1],?θ∈R,都有g(shù)(x)-1≥f(θ)恒成立,求實(shí)數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5 -
2.對(duì)于任意x1,x2∈(2,+∞),當(dāng)x1<x2時(shí),恒有
成立,則實(shí)數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:61引用:3難度:0.6 -
3.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:536引用:36難度:0.5
把好題分享給你的好友吧~~