試卷征集
加入會(huì)員
操作視頻

設(shè)數(shù)列{an}滿足a1=0,
4
a
n
+
1
=
4
a
n
+
2
4
a
n
+
1
+
1
b
n
=
4
a
n
+
1

(1)試證明數(shù)列{bn}是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(2)是否存在常數(shù)c,使得數(shù)列
{
2
b
n
+
c
?
3
n
}
是等比數(shù)列?請(qǐng)說(shuō)明理由.
(3)令
T
n
=
b
1
×
b
3
×
b
5
×?
b
2
n
-
1
b
2
×
b
4
×
b
6
×?
b
2
n
,是否存在實(shí)數(shù)a,使得
T
n
b
n
+
1
2
lo
g
2
a
+
1
對(duì)一切n∈N+都成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:135引用:3難度:0.5
相似題
  • 1.古印度數(shù)學(xué)家婆什伽羅在《麗拉沃蒂》一書中提出如下問題:某人給一個(gè)人布施,初日施2子安貝(古印度貨幣單位),以后逐日倍增,問一月共施幾何?在這個(gè)問題中,以一個(gè)月31天計(jì)算,記此人第n日布施了an子安貝(其中1≤n≤31,n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn.若關(guān)于n的不等式
    S
    n
    -
    62
    a
    2
    n
    +
    1
    -
    t
    a
    n
    +
    1
    恒成立,則實(shí)數(shù)t的取值范圍為( ?。?/h2>

    發(fā)布:2024/12/9 14:30:1組卷:52引用:3難度:0.6
  • 2.已知等比數(shù)列a1,a2,…,a9各項(xiàng)為正且公比q≠1,則( ?。?/h2>

    發(fā)布:2024/11/25 22:30:1組卷:33引用:2難度:0.8
  • 3.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,
    S
    n
    +
    1
    +
    1
    =
    4
    a
    n
    n
    N
    *
    ,則使得不等式
    a
    m
    +
    a
    m
    +
    1
    +
    +
    a
    m
    +
    k
    -
    a
    m
    +
    1
    S
    k
    2023
    k
    N
    *
    成立的正整數(shù)m的最大值為( ?。?/h2>

    發(fā)布:2024/12/7 11:0:2組卷:200引用:4難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正