如圖,半圓O中,AB=8cm,點(diǎn)M為AB上一點(diǎn),AM=6cm,點(diǎn)P為半圓上一個(gè)動(dòng)點(diǎn),連接PM、AP,過(guò)點(diǎn)A作AN⊥PM,垂足為N.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段AP、AN、NM的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)設(shè)AP的長(zhǎng)度為x cm,AN的長(zhǎng)度為y1cm,NM的長(zhǎng)度為y2cm,對(duì)于點(diǎn)P在半圓O上的不同位置,畫圖、測(cè)量,得到了線段AP、AN、NM的長(zhǎng)度的幾組值,如表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7.5 | 7.64 | 7.78 | 7.90 | 8 |
y1/cm | 0 | 0.99 | 1.99 | 2.97 | 3.92 | 4.82 | 5.61 | 5.99 | 5.56 | 5.18 | 4.46 | 3.30 | 0 |
y2/cm | 6 | 5.91 | 5.65 | 5.21 | 4.53 | 3.56 | 2.12 | 0.24 | 2.25 | 3.01 | 4.00 | 5.01 | 6 |
4
3
4
cm;3
(2)利用表格中的數(shù)據(jù),在如下平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)y2關(guān)于x的函數(shù)圖象;

(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)△ANM是等腰三角形時(shí),直接寫出AP長(zhǎng)度的近似值.(保留一位小數(shù))
【考點(diǎn)】圓的綜合題.
【答案】4
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:111引用:3難度:0.4
相似題
-
1.如圖是小宇同學(xué)的錯(cuò)題積累本的部分內(nèi)容,請(qǐng)仔細(xì)閱讀,并完成相應(yīng)的任務(wù).
x年x月x日星期日
錯(cuò)題積累
在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于點(diǎn)D,
O是AB上一點(diǎn),且⊙O經(jīng)過(guò)B,D兩點(diǎn),分別交AB,BC于
點(diǎn)E,F(xiàn).
…
[自勉]
讀書使人頭腦充實(shí),討論使人明辨是非,做筆記則能使知識(shí)精確.
——培根
(1)使用直尺和圓規(guī),根據(jù)題目要求補(bǔ)全圖形(不寫作法,保留作圖痕跡);
(2)求證:⊙O與AC相切于點(diǎn)D;
(3)若CD=,∠BDC=60°,則劣弧3的長(zhǎng)為 .?ED發(fā)布:2025/5/24 1:30:2組卷:125引用:2難度:0.2 -
2.【問(wèn)題提出】如圖1,AB為⊙O的一條弦,點(diǎn)C在弦AB所對(duì)的優(yōu)弧上運(yùn)動(dòng)時(shí),根據(jù)圓周角性質(zhì),我們知道∠ACB的度數(shù)不變.愛動(dòng)腦筋的小芳猜想,如果平面內(nèi)線段AB的長(zhǎng)度已知,∠ACB的大小確定,那么點(diǎn)C是不是在某個(gè)確定的圓上運(yùn)動(dòng)呢?
【問(wèn)題探究】為了解決這個(gè)問(wèn)題,小芳先從一個(gè)特殊的例子開始研究.如圖2,若AB=4,線段AB上方一點(diǎn)C滿足∠ACB=45°,為了畫出點(diǎn)C所在的圓,小芳以AB為底邊構(gòu)造了一個(gè)Rt△AOB,再以點(diǎn)O為圓心,OA為半徑畫圓,則點(diǎn)C在⊙O上.后來(lái)小芳通過(guò)逆向思維及合情推理,得出一個(gè)一般性的結(jié)論.即:若線段AB的長(zhǎng)度已知,∠ACB的大小確定,則點(diǎn)C一定在某一個(gè)確定的圓上,即定弦定角必定圓,我們把這樣的幾何模型稱之為“定弦定角”模型.
【模型應(yīng)用】
(1)若AB=6,平面內(nèi)一點(diǎn)C滿足∠ACB=60°,若點(diǎn)C所在圓的圓心為O,則∠AOB=,劣弧AB的長(zhǎng)為 .
(2)如圖3,已知正方形ABCD以AB為腰向正方形內(nèi)部作等腰△ABE,其中AB=AE,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,若點(diǎn)P是△AEF的內(nèi)心.
①求∠BPE的度數(shù);
②連接CP,若正方形ABCD的邊長(zhǎng)為4,求CP的最小值.發(fā)布:2025/5/24 1:30:2組卷:547引用:3難度:0.5 -
3.(1)如圖1,⊙A的半徑為1,AB=2.5,點(diǎn)P為⊙A上任意一點(diǎn),則BP的最小值為 ;
(2)如圖2,已知矩形ABCD,點(diǎn)E為AB上方一點(diǎn),連接AE,BE,作EF⊥AB于點(diǎn)F,點(diǎn)P是△BEF的內(nèi)心,求∠BPE的度數(shù);
(3)如圖3,在(2)的條件下,連接AP,CP,若矩形的邊長(zhǎng)AB=8,BC=4,BE=BA,求此時(shí)CP的最小值.發(fā)布:2025/5/24 1:30:2組卷:206引用:1難度:0.3
相關(guān)試卷