在平面直角坐標(biāo)系中,D(0,-3),M(4,-3),直角三角形ABC的邊與x軸分別相交于O、G兩點(diǎn),與直線DM分別交于E、F點(diǎn),∠ACB=90°.

(1)將直角三角形如圖1位置擺放,如果∠AOG=47°,則∠CEF=137°137°;
(2)將直角三角形ABC如圖2位置擺放,N為AC上一點(diǎn),∠NED+∠CEF=180°,請(qǐng)寫出∠NEF與∠AOG之間的等量關(guān)系,并說明理由.
【考點(diǎn)】平行線的判定與性質(zhì);坐標(biāo)與圖形性質(zhì).
【答案】137°
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:59引用:2難度:0.7
相似題
-
1.如圖,已知AD⊥BC,垂足為點(diǎn)D,EF⊥BC,垂足為點(diǎn)F,∠1+∠2=180°.請(qǐng)?zhí)顚憽螩GD=∠CAB的理由.
∵AD⊥BC,EF⊥BC,
∴∠ADC=90°,∠EFC=90° ( ),
∴∠ADC=∠EFC,
∴AD∥( ),
∴∠+∠2=180°( ),
∵∠1+∠2=180°,
∴∠=∠( ),
∴DG∥( ),
∴∠CGD=∠CAB.發(fā)布:2025/6/8 20:0:1組卷:863引用:12難度:0.5 -
2.已知的三角形的三個(gè)內(nèi)角的度數(shù)和是180°,如圖是兩個(gè)三角板不同位置的擺放,其中∠ACB=∠CDE=90°,∠BAC=60°,∠DEC=45°.
(1)當(dāng)AB∥DC時(shí),如圖①,求∠DCB的度數(shù).
(2)當(dāng)CD與CB重合時(shí),如圖②,判斷DE與AC的位置關(guān)系,并說明理由.
(3)如圖③,當(dāng)∠DCB等于度時(shí),AB∥EC.發(fā)布:2025/6/8 19:0:1組卷:172引用:4難度:0.5 -
3.如圖,AC,BD被AB所截,E為AB外一點(diǎn),連接CE,ED,已知∠A=(90+x)°,∠B=(90-x)°,∠CED=90°,2∠C-∠D=α°.
(1)判斷AC與BD的位置關(guān)系,并說明理由;
(2)當(dāng)α=30°時(shí),求∠C,∠D的度數(shù);
(3)求∠C,∠D的度數(shù)(用含α的式子表示).發(fā)布:2025/6/8 19:30:1組卷:83引用:2難度:0.7