【問題一】:觀察下列等式
11×2=1-12,12×3=12-13,13×4=13-14,
將以上三個(gè)等式兩邊分別相加得:
11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.
(1)猜想并寫出:1n(n+1)=1n-1n+11n-1n+1.
(2)直接寫出下列各式的計(jì)算結(jié)果:
①11×2+12×3+13×4+…+12016×2017=2016201720162017;
②11×2+12×3+13×4+…+1n(n+1)=nn+1nn+1.
(3)探究并計(jì)算:
①11×3+13×5+15×7+…+12015×2017.
②11×3-12×4+13×5-14×6+15×7+…+117×19-118×20
【問題二】:為了求1+2+22+23+…+22017的值,可令S=1+2+22+23+…+22017,則2S=1+2+22+23+…+22018,因此2S-S=22018-1,
所以.1+2+22+23+…+22017=22018-1.
仿照上面推理計(jì)算:
(1)求1+5+52+53+…+52017的值
(2)求3-32+33-34+…+399-3100的值.
1
1
×
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
1
×
2
+
1
2
×
3
+
1
3
×
4
=
1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
1
-
1
4
=
3
4
1
n
(
n
+
1
)
1
n
-
1
n
+
1
1
n
-
1
n
+
1
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
…
+
1
2016
×
2017
2016
2017
2016
2017
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
…
+
1
n
(
n
+
1
)
n
n
+
1
n
n
+
1
1
1
×
3
+
1
3
×
5
+
1
5
×
7
+
…
+
1
2015
×
2017
1
1
×
3
-
1
2
×
4
+
1
3
×
5
-
1
4
×
6
+
1
5
×
7
+
…
+
1
17
×
19
-
1
18
×
20
【考點(diǎn)】有理數(shù)的混合運(yùn)算;規(guī)律型:數(shù)字的變化類.
【答案】;;
1
n
-
1
n
+
1
2016
2017
n
n
+
1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/25 18:0:1組卷:712引用:2難度:0.3
相似題
-
1.若a、b、c、d、e都是非零的有理數(shù),且a、b互為相反數(shù),c、d互為倒數(shù),e的絕對(duì)值為3.
(1)直接寫出a+b,cd,e的值.
(2)求e+2cd+的值.a+be發(fā)布:2024/12/22 8:0:1組卷:86引用:2難度:0.6 -
2.小明是個(gè)聰明而富有想象力的孩子,學(xué)習(xí)了“有理數(shù)的乘方”后,他就琢磨著使用乘方這一數(shù)學(xué)知識(shí),腦洞大開地定義出“有理數(shù)的除方”概念.于是規(guī)定:求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做除方,如:2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”:(-3)÷(-3)÷(-3)÷(-3)記做(-3)④,讀作“-3的圈4次方”,一般地,把
(a≠0)記做a?讀作“a的圈n次方”.a÷a÷a÷…÷an個(gè)a
(1)直接寫出計(jì)算結(jié)果
(-)③=;(-3)④=;2⑤=;12
(2)小明深入思考后發(fā)現(xiàn),有理數(shù)的“除方”運(yùn)算能轉(zhuǎn)化為乘方運(yùn)算,且結(jié)果可以寫成冪的形式,推導(dǎo)出“除方“的運(yùn)算公式歸納如下:a?=(n為正整數(shù)且a≠0,n≥2)(要求將結(jié)果寫成冪的形式,結(jié)果用含a,n的式子表示);
(3)請(qǐng)利用(2)問的推導(dǎo)公式計(jì)算24÷23+(-8)×2③.發(fā)布:2024/12/22 8:0:1組卷:50引用:1難度:0.6 -
3.計(jì)算:4+(-2)3×5-(-28)÷4.
發(fā)布:2024/12/23 13:0:2組卷:688引用:5難度:0.7
把好題分享給你的好友吧~~