如圖1,直線(xiàn)AB與直線(xiàn)OC交于點(diǎn)O,∠BOC=α°(0°<α°<90°).小明將一個(gè)含30°,60°的直角三角板PQD如圖1所示放置,使頂點(diǎn)P落在直線(xiàn)AB上,過(guò)點(diǎn)Q作直線(xiàn)MN∥AB交直線(xiàn)OC于點(diǎn)H(點(diǎn)H在Q左側(cè)).

(1)若PD∥OC,∠NQD=45°,求α的度數(shù).
(2)如圖2,若∠PQH的角平分線(xiàn)交直線(xiàn)AB于點(diǎn)E.
①當(dāng)QE∥OC,α=60°時(shí),求證:OC∥PD.
②小明將三角板保持PD∥OC并向左平移,運(yùn)動(dòng)過(guò)程中,探究∠PEQ與α之間的數(shù)量關(guān)系,并說(shuō)明理由.
【考點(diǎn)】三角形綜合題.
【答案】(1)45;
(2)①見(jiàn)解析;
②.
(2)①見(jiàn)解析;
②
30
°
+
1
2
α
°
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:78引用:1難度:0.3
相似題
-
1.在△ABC中,∠BAC=90°,AB=AC,點(diǎn)P為AC上一點(diǎn),點(diǎn)M為BC上一點(diǎn),線(xiàn)段AM,BP交于點(diǎn)E.
(1)若BP為△ABC的角平分線(xiàn).
①如圖1,已知AM⊥BC,求證:AE=AP;
②如圖2,已知AM⊥BP,求證:AP=PM;
(2)如圖3,若BP為△ABC的中線(xiàn),且AM⊥BP,試探究BP,AM,MP三條線(xiàn)段的數(shù)量關(guān)系是 (直接寫(xiě)出答案).發(fā)布:2025/6/8 22:0:1組卷:90引用:3難度:0.3 -
2.兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái),則形成一組全等的三角形,把具有這個(gè)規(guī)律的圖形稱(chēng)為“手拉手”圖形.
(1)問(wèn)題發(fā)現(xiàn):
如圖1,若△ABC和△ADE是頂角相等的等腰三角形,BC,DE分別是底邊.求證:BD=CE;
(2)解決問(wèn)題:
如圖2,若△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一條直線(xiàn)上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線(xiàn)段CM,AE,BE之間的數(shù)量關(guān)系并說(shuō)明理由.發(fā)布:2025/6/8 23:0:1組卷:1695引用:10難度:0.2 -
3.如圖1,在平面直角坐標(biāo)系xOy中,A(-3,0),B(2,0),C為y軸正半軸上一點(diǎn),且BC=4.
(1)∠OBC=°;
(2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿射線(xiàn)AB方向運(yùn)動(dòng),同時(shí)點(diǎn)Q在邊BC上從點(diǎn)B向點(diǎn)C運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中:
①若點(diǎn)P的速度為每秒2個(gè)單位長(zhǎng)度,點(diǎn)Q的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△PQB是直角三角形時(shí),求t的值;
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別是a,b,當(dāng)△PQB是等腰三角形時(shí),求出a與b滿(mǎn)足的數(shù)量關(guān)系.發(fā)布:2025/6/8 23:30:1組卷:435引用:5難度:0.3