如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線AB-BC以每秒5個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),連結(jié)PQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)①AB的長(zhǎng)為 1010.
②線段AQ的長(zhǎng)為 8-2t(0<t≤145)8-2t(0<t≤145)(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),求t的值.
(3)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),求PQ與△ABC一邊垂直時(shí)t的值.
(4)當(dāng)PQ將△ABC分成兩部分圖形的面積比為1:3時(shí),直接寫出t的值.
14
5
14
5
【考點(diǎn)】三角形綜合題.
【答案】10;8-2t(0<t≤)
14
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/21 17:0:12組卷:118引用:1難度:0.3
相似題
-
1.如圖,△AOB中,OA=OB=6,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△COD.OC與AB交于點(diǎn)G,CD分別交OB、AB于點(diǎn)E、F.
(1)∠A與∠D的數(shù)量關(guān)系是:∠A ∠D;
(2)求證:△AOG≌△DOE;
(3)當(dāng)A,O,D三點(diǎn)共線時(shí),恰好OB⊥CD,求此時(shí)CD的長(zhǎng).發(fā)布:2025/5/25 10:0:1組卷:82引用:1難度:0.2 -
2.如圖,△ABC中,∠ACB=90°,CB=CA,CE⊥AB于E,點(diǎn)F是CE上一點(diǎn),連接AF并延長(zhǎng)交BC于點(diǎn)D,CG⊥AD于點(diǎn)G,連接EG.
(1)求證:CD2=DG?DA;
(2)如圖1,若點(diǎn)D是BC中點(diǎn),求證:CF=2EF;
(3)如圖2,若GC=2,GE=2,求證:點(diǎn)F是CE中點(diǎn).2發(fā)布:2025/5/25 11:0:2組卷:265引用:2難度:0.1 -
3.【閱讀理解】
截長(zhǎng)補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法.截長(zhǎng)就是在長(zhǎng)邊上截取一條線段與某一短邊相等,補(bǔ)短是通過在一條短邊上延長(zhǎng)一條線段與另一短邊相等,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC下方一點(diǎn),∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.
解題思路:延長(zhǎng)DC到點(diǎn)E,使CE=BD,連接AE,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數(shù)量關(guān)系.
根據(jù)上述解題思路,請(qǐng)直接寫出DA、DB、DC之間的數(shù)量關(guān)系是 ;
【拓展延伸】
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點(diǎn)D是邊BC下方一點(diǎn),∠BDC=90°,探索線段DA、DB、DC之間的數(shù)量關(guān)系,并說明理由;
【知識(shí)應(yīng)用】
(3)如圖3,兩塊斜邊長(zhǎng)都為14cm的三角板,把斜邊重疊擺放在一起,則兩塊三角板的直角頂點(diǎn)之間的距離PQ的長(zhǎng)為 cm.發(fā)布:2025/5/25 9:0:1組卷:427引用:6難度:0.3