(1)方法回顧
在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:
第一步添加輔助線:如圖1,在△ABC中,延長DE(D、E分別是AB、AC的中點(diǎn))到點(diǎn)F,使得EF=DE,連接CF;
第二步證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到中位線DE與BC的關(guān)系是 DE∥BC,BC=2DEDE∥BC,BC=2DE;(直接填寫結(jié)果)
(2)問題解決
如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=3,DF=42,∠GEF=90°,求GF的長.
(3)拓展研究
如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=3,DF=42,∠GEF=90°,求GF的長.
2
2
【考點(diǎn)】四邊形綜合題.
【答案】DE∥BC,BC=2DE
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/28 8:0:9組卷:1263引用:6難度:0.2
相似題
-
1.如圖,∠BOD=45°,BO=DO,點(diǎn)A在OB上,四邊形ABCD是矩形,連接AC,BD交于點(diǎn)E,連接OE交AD于點(diǎn)F.下列4個(gè)判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點(diǎn)G是線段OF的中點(diǎn),則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號(hào))2發(fā)布:2024/12/23 18:30:1組卷:1469引用:7難度:0.3 -
2.我們知道,一個(gè)正方形的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形,進(jìn)一步探究是否存在以下形狀的四邊形,它的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請(qǐng)分別畫出(只需各畫一個(gè),并說明其形狀或邊、角關(guān)系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
3.四邊形ABCD是矩形,點(diǎn)E是射線BC上一點(diǎn),連接AC,DE.
(1)如圖1,點(diǎn)E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點(diǎn)E在邊BC的延長線上,BE=AC,若M是DE的中點(diǎn),連接AM,CM,求證:AM⊥MC;
(3)如圖3,點(diǎn)E在邊BC上,射線AE交射線DC于點(diǎn)F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1410引用:10難度:0.4
把好題分享給你的好友吧~~